SCS Faculty Recruitment Series: Jamie Morgenstern, "Towards a Theory of Fairness in Machine Learning"

Event Details
  • Date/Time:
    • Thursday October 13, 2016 - Friday October 14, 2016
      11:00 am - 11:59 am
  • Location: Institute for Electronics and Nanotechnology (IEN) MiRC Room 102 A&B
  • Phone:
  • URL:
  • Email:
  • Fee(s):
  • Extras:

Kenya Payton


Summary Sentence: SCS Recruitment Lecture from Jamie Morgenstern, Postdoctoral Fellow, The University of Pennsylvania

Full Summary: No summary paragraph submitted.

  • Jamie Morgenstern Jamie Morgenstern


Algorithm design has moved from being a tool used exclusively for designing systems to one used to present people with personalized content, advertisements, and other economic opportunities. Massive amounts of information are recorded about people's online behavior from the websites they visit and the advertisements they click on to their search history and their IP address. Algorithms use this information for many purposes: to choose which prices to quote individuals for airline tickets, which advertisements to show them, and even which news stories to promote. 

These systems create new challenges for algorithm design. When a person's behavior influences the prices they may face in the future, they may have a strong incentive to modify their behavior to improve their long-term utility; therefore, these algorithms' performance should be resilient to strategic manipulation. Furthermore, when an algorithm makes choices that affect people's everyday lives, the effects of these choices raise ethical concerns such as whether the algorithm's behavior violates individuals' privacy or treats people fairly.

In particular, Machine Learning Algorithms have received much attention for exhibiting bias, or unfairness, in a large number of contexts. In this talk, I will describe my recent work on developing a definition of fairness for machine learning. One definition of fairness, encoding the notion of "fair equality of opportunity," informally states that if one person has higher expected quality than another person, the higher quality person should be given at least as much opportunity as the lower quality person. I will present a result characterizing the performance degradation of algorithms which satisfy this condition in the contextual bandits setting. To complement these theoretical results, I then present the results of several empirical evaluations of fair algorithms. 

I will also briefly describe my work on designing algorithms whose performance guarantees are resilient to strategic manipulation of their inputs, and machine learning for optimal auction design. 


Jamie Morgenstern is a Warren Center postdoctoral fellow in Computer Science and Economics at the University of Pennsylvania. She received her Ph.D. in Computer Science from Carnegie Mellon University in 2015, and her B.S. in Computer Science and B.A. in Mathematics from the University of Chicago in 2010. Her research focuses on machine learning for mechanism design, fairness in machine learning, and algorithmic game theory. She has received a Microsoft Women's Research Scholarship, an NSF Graduate Research Fellowship, and a Simons Award for Graduate Students in Theoretical Computer Science.


Additional Information

In Campus Calendar

College of Computing, School of Computer Science

Invited Audience
Faculty/Staff, Public, Undergraduate students, Graduate students
No categories were selected.
Jamie Morgenstern, School of Computer Science, SCS, Lecuture
  • Created By: Devin Young
  • Workflow Status: Published
  • Created On: Oct 7, 2016 - 3:13pm
  • Last Updated: Apr 13, 2017 - 5:14pm