event
PhD Defense by Olivia Viella
Primary tabs
School of Physics Thesis Dissertation Defense
Presenter: Olivia Viella
Title: Novel Magnetic Phases of Quantum Matter from Geometric, Spin-Space and Chemical Frustration
Date: Tuesday, July 2, 2024
Time: 10:30 a.m.
Location: Howey Physics Building, N201/202
Committee members:
Dr. Martin Mourigal, School of Physics, Georgia Institute of Technology (advisor)
Dr. Claire Berger, School of Physics, Georgia Institute of Technology
Dr. Zhigang Jiang, School of Physics, Georgia Institute of Technology
Dr. Itamar Kimchi, School of Physics, Georgia Institute of Technology
Dr. Joe Paddison, Neutron Scattering Division, Oak Ridge National Laboratory
Abstract:
Quantum magnetism is a branch of hard condensed matter physics concerned with realizing, understanding, and controlling novel quantum phases of matter. The chemical and geometrical differences in the crystal lattices of various transition-metal and rare-earth compounds lead to complex magnetic phenomena, which offer a vast arena for investigating quantum magnetism using theoretical and experimental tools. This thesis presents work on both heavily studied and new candidate materials to realize exotic magnetic states of matter. Experimental methods, including thermomagnetic measurements and inelastic neutron scattering, were paired with semi-classical methods to model spin dynamics to characterize the ground-state and excitation spectrum of three distinct systems. The work on the triangular-lattice material YbMgGaO4 evidences the combined role of geometric and chemical frustration to stabilize a disorder spin state on the triangular lattice. Thermomagnetic experiments on the quantum pyrochlore antiferromagnet LiYbSe2 indicate missing entropy implying a possible spin-ice phase, which neutron diffraction confirming magnetic isotropy. The work on the magnetic skyrmion candidate NiI2 show the first experimental evidence of a high-topological skyrmion which is not stabilized by a DM or RKKY interaction in a magnetic field; but rather, but Kitaev exchange.
Groups
Status
- Workflow Status:Published
- Created By:Tatianna Richardson
- Created:06/24/2024
- Modified By:Tatianna Richardson
- Modified:06/24/2024
Categories
Keywords
Target Audience