event

PhD Defense by JOSE LUIS ROLANDO

Primary tabs

 

In partial fulfillment of the requirements for the degree of

 

Doctor of Philosophy in Biology

In the

School of Biological Sciences

 

JOSE LUIS ROLANDO

 

Will defend his dissertation

 

SALT MARSH FUNCTIONAL ECOLOGY: FROM ROOT-MICROBE INTERACTIONS TO ECOSYSTEM RESTORATION

 

10th April, 2023

3:15 PM

Mason Building, Room 1133

 

https://gatech.zoom.us/j/98185340904?pwd=cVNDREpydkh6Y1lpc1ZDQmpYK0k5UT09

 

 Thesis Advisor:

Joel E. Kostka, Ph.D.

School of Biological Sciences

Georgia Institute of Technology

 

Committee Members:

Marvin Whiteley, Ph.D.

School of Biological Sciences

Georgia Institute of Technology

 

Mark Hay, Ph.D.

School of Biological Sciences

Georgia Institute of Technology

 

Konstantinos T. Konstantinidis, Ph.D.

School of Civil and Environmental Engineering

Georgia Institute of Technology

 

James T. Morris, Ph.D.

Belle Baruch Institute for Marine & Coastal Science

University of South Carolina

 

ABSTRACT:

Salt marshes are highly productive intertidal wetland ecosystems located along wave-protected coastlines. Although salt marshes provide numerous ecosystem services, they are vulnerable to degradation by climate change, sudden vegetation dieback events, and unsustainable coastal development. To inform the adaptive management of marsh ecosystems, this dissertation addresses gaps in fundamental science related to the resilience and adaptability of salt marshes to environmental stressors, as well as their potential for restoration. In the first section of this thesis, I leveraged in situ biomass gradients of Spartina alterniflora -a foundational plant species that predominates over primary production on US Atlantic and Gulf of Mexico coastlines- as a natural laboratory to investigate the relationship between plant primary productivity, and plant-microbe interactions in the root zone. Multi-omics and biogeochemistry approaches were closely coupled to interrogate plant-microbe interactions and their implications for ecosystem function. My results show that enhanced microbial activity in the rhizosphere replenishes nutrients and terminal electron acceptors in higher biomass stands. Specifically, my research uncovered novel sulfur-oxidizing endosymbionts that benefit S. alterniflora by detoxifying the root-zone, and by fixing C and N that may be transferred to the host plant.  I conclude that marine coastal plants rely on the fast recycling of sulfur in their root zone for organic matter breakdown and nutrient cycling, and I show for the first time that the rapid recycling of sulfur supports nitrogen fixation in the roots of a coastal marine plant. A second investigation of my dissertation focused on an impaired salt marsh ecosystem in Charleston, SC that had experienced sudden vegetation dieback (SVD). I investigated the causal effects of dieback, the potential for restoration through grass planting, and the ecosystem's resilience to sea level rise. Dieback was associated with extreme weather events such as droughts and flooding influenced by hurricane Joaquin. I conclude that failure to consider the increasing frequency and intensity of extreme climatic events in ecosystem models underestimates salt marsh vulnerability to climate change and rapid restoration of marsh dieback is crucial to avoid further degradation by marsh erosion. Coastal restoration is a multibillion dollar global industry and a common restoration strategy in the U.S. involves S. alterniflora grass planting. My dissertation has revealed that the root microbiome of this foundational plant is closely linked to its productivity and plays a key role in the functioning of salt marshes.  Further, climate change mitigation actions are urgently needed to preserve coastal marsh ecosystems, and future research is warranted to harness the root microbiome to improve the resilience and restoration of coastal marshes.

Status

  • Workflow Status:Published
  • Created By:Tatianna Richardson
  • Created:03/30/2023
  • Modified By:Tatianna Richardson
  • Modified:03/30/2023

Categories