PhD Defense by Majid Farhadi

Event Details
  • Date/Time:
    • Wednesday April 20, 2022
      9:30 am - 11:30 am
  • Location: Atlanta, GA
  • Phone:
  • URL: BlueJeans
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Randomized Kernel Rounding Methods for Routing, Scheduling, and Machine Learning

Full Summary: No summary paragraph submitted.

Title: Randomized Kernel Rounding Methods for Routing, Scheduling, and Machine Learning

 

Date: Wednesday, April 20, 2022

Time: 09:30am EST

 

Location: https://bluejeans.com/601031659 (online)

 

Majid Farhadi

Ph.D. Candidate

Algorithms, Combinatorics, and Optimization School of Computer Science Georgia Institute of Technology

 

Committee:

Dr. Swati Gupta, School of Industrial and Systems Engineering, Georgia Institute of Technology Dr. Renato D. C. Monteiro, School of Industrial and Systems Engineering, Georgia Institute of Technology Dr. Mohit Singh, School of Industrial and Systems Engineering, Georgia Institute of Technology Dr. Santosh Vempala, College of Computing, Georgia Institute of Technology

 

Advisor: Dr. Prasad Tetali, Department of Mathematical Sciences, Carnegie Mellon University

 

Reader: Dr. Swati Gupta, School of Industrial and Systems Engineering, Georgia Institute of Technology

 

Thesis will be available at:

 

https://drive.google.com/file/d/11e6s2-KEYVaNtrLa1hL4GUyEsm20XQQ5/view?usp=sharing

 

Summary:

 

 From Computer Science, Machine Learning, Communications, and Control Systems to Supply Chain, Finance, and Policy Making we make a sequence of choices, optimality of which can be decisive to maximize revenue or critical to ensure robustness, security, and reliability. In numerous cases, solving the exact problem is not feasible, e.g., due to limited computational and storage resources, missing key data, or intrinsic hardness barriers. Therefore, researchers develop algorithms to guarantee solutions that are approximately correct/optimal.

 

We study classical problems from combinatorial optimization and machine learning and develop near optimal approximation algorithms and computational complexity results. We introduce new randomized techniques, notably the kernel alpha-point rounding, for efficiently converting solutions of tractable convex/linear relaxations of these problems. The problems under study have immediate applications in machine learning, Ads/search systems, routing, scheduling, non-convex optimization, mathematical programming, Markov chains, and non-linear dimension reduction; to name but a few. We employ techniques from convex optimization, machine learning, linear algebra, graph theory, high dimensional geometry, combinatorics, and probability theory; and further contribute to such theories, e.g., by providing a new inequality on the lower tail of a sum of Bernoulli random variables.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 19, 2022 - 12:27pm
  • Last Updated: Apr 19, 2022 - 12:27pm