PhD Defense by Ashwath Kumar

Event Details
  • Date/Time:
    • Tuesday May 4, 2021
      10:00 am - 12:00 pm
  • Location: Atlanta, GA; REMOTE
  • Phone:
  • URL: Bluejeans
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: QUANTITATIVE ANALYSIS OF CHIP-SEQ SIGNALS AND TRANSCRIPTOMES

Full Summary: No summary paragraph submitted.

In partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Bioinformatics

in the School of Biological Sciences


Ashwath Kumar

Defends his thesis:

QUANTITATIVE ANALYSIS OF CHIP-SEQ SIGNALS AND TRANSCRIPTOMES

 

Tuesday, May 4th, 2021

10:00 AM Eastern Time

https://bluejeans.com/106700132

 

Thesis Advisor:

Dr. Yuhong Fan

School of Biological Sciences

Georgia Institute of Technology

 

Committee Members:

Dr. Yajun Mei

School of Industrial and Systems Engineering

Georgia Institute of Technology

 

Dr. King Jordan

School of Biological Sciences

Georgia Institute of Technology

 

Dr. Shuyi Nie

School of Biological Sciences

Georgia Institute of Technology


Dr. Kaixiang Cao

School of Medicine

Case Western Reserve University

 

Abstract

Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) is commonly used to analyze the in vivo interactions between proteins and DNA across the genome. Analysis of ChIP-seq data has largely focused on detection of presence of peaks that represent DNA regions enriched by chromatin immunoprecipitation, i.e. the DNA loci bound by the immunoprecipitated proteins. To properly interpret ChIP-seq data, capturing its quantitative features is imperative. In this dissertation, we develop a statistically robust pipeline, named as ChIP-seq Signal Quantifier (CSSQ), that provides normalized ChIP-seq data, enabling detection and quantification of differential binding (DBs) across the genome, allowing calculable comparisons among multiple ChIP-seq datasets on predefined regions. Using both experimental datasets and computational simulations, we demonstrate the superior performance of CSSQ against existing tools as evidenced by its high sensitivity and specificity, and low false discovery rate. CSSQ is applicable to ChIP-seq datasets with varied signal to noise ratio, significantly improving the accuracy of comparison of ChIP-seq datasets from different experiments, serving as a powerful pipeline suited to garner quantitative information from ChIP-seq datasets for deciphering epigenomes.

RNA-seq has become the leading choice for transcriptome analysis.  Using RNA-seq and bioinformatics analysis, we characterize gene expression profiles and key cellular processes during stem cell differentiation and cell responses upon nanoparticle exposure. Collectively, these studies show that transcriptome analysis is a powerful tool for characterization and understanding cellular mechanisms.

 

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 28, 2021 - 3:36pm
  • Last Updated: Apr 28, 2021 - 3:36pm