PhD Defense by Angel J. Santiago-Lopez

Primary tabs

Angel J. Santiago-Lopez  BioE Ph.D. Dissertation Defense  Friday, December 11th, 2020, 3:00 pm  Zoom Link: https://emory.zoom.us/j/95109890334?pwd=ZjZWc0xMK3lNTjhVL0RzejE4Vytqdz09      Advisor:  Robert Gross, MD, PhD (Emory University)    Committee:  Michelle LaPlaca, PhD (Georgia Institute of Technology)  Mark Prausnitz, PhD (Georgia Institute of Technology)  Ravi Kane, PhD (Georgia Institute of Technology)  Jae-Kyung (Jamise) Lee, PhD (University of Georgia)      Development and Characterization of Viral Vectors for Stress-Dependent Transgene Expression in Neurons  The overarching goal of this work was to design and characterize expression vectors that were responsive to physiological changes associated with neurodegenerative disease. The development of this molecular tool responds to the need for physiologically responsive constructs designed to prevent unwanted side effects related to transgene overexpression in current gene therapy interventions. To accomplish this, we adopted regulatory elements from the unfolded protein response (UPR), a homeostatic mechanism used by cells to cope with stress. Thus, by harnessing a biological signal associated with how cells respond to stress conditions, we created stress-responsive viral vectors and demonstrated their use in neurons. This thesis describes the characterization of these vectors by extensive time-lapse fluorescent microscopy assays in several in vitro models of proteostasis dysfunction, including er stress, proteasome inactivation, phosphatase inhibition, and alpha-synuclein overexpression. Collectively, our results demonstrate the feasibility of mobilizing cellular stress signaling to create physiologically-responsive viral vectors for use in neuroscience.  


  • Workflow Status: Published
  • Created By: Tatianna Richardson
  • Created: 12/02/2020
  • Modified By: Tatianna Richardson
  • Modified: 12/02/2020