PhD Proposal by Timothy Sowers

Event Details
  • Date/Time:
    • Wednesday February 27, 2019 - Thursday February 28, 2019
      1:00 pm - 2:59 pm
  • Location: MRDC 3515
  • Phone:
  • URL:
  • Email:
  • Fee(s):
  • Extras:
No contact information submitted.

Summary Sentence: Diagnosis and Characterization of Atherosclerotic Plaques with Photoacoustic Imaging

Full Summary: No summary paragraph submitted.

Timothy Sowers

BioE Ph.D. Proposal Presentation


1:00 PM, Wednesday, February 27, 2019

MRDC 3515




Dr. Stanislav Emelianov (Georgia Institute of Technology, Emory University)



Committee Members:

Dr. Brooks Lindsey (Georgia Institute of Technology, Emory University)

Dr. David Ku (Georgia Institute of Technology)

Dr. Muralidhar Padala (Emory University, Georgia Institute of Technology)

Dr. Levent Degertekin (Georgia Institute of Technology)



Diagnosis and Characterization of Atherosclerotic Plaques with Photoacoustic Imaging


Cardiovascular disease is the primary cause of death worldwide.  Coronary artery disease, a subset of cardiovascular disease, caused an estimated 7.4 million deaths in 2015.  Physicians' inability to accurately locate plaques is a current impediment to diagnosis and treatment.  Photoacoustics is being developed to address this deficiency.  Photoacoustic imaging is a technique in which nanosecond laser pulses are used to locally heat tissue, producing a thermal expansion and resultant ultrasonic wave that can be measured with an ultrasound transducer.  The intensity of the ultrasonic signal is proportional to the tissue’s optical absorption coefficient, which will vary by tissue type and light wavelength.  Thus, the distinct optical spectra of lipid make it an identifiable marker of atherosclerotic plaques.  The work that will be proposed for this dissertation consists of advancing photoacoustic imaging of atherosclerotic plaques with three specific aims.  First, Monte Carlo simulations will be conducted to determine the optimal geometry for imaging using an ultrasound array and external light delivery.  Second, the safety of intravascular photoacoustic imaging, a catheter-based technique, will be assessed to determine if light absorption is likely to cause tissue damage.  Third, nanoscale contrast agents that enhance photoacoustic identification of lipid plaque will be tested. 

Additional Information

In Campus Calendar

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Phd proposal
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Feb 12, 2019 - 11:26am
  • Last Updated: Feb 12, 2019 - 11:26am