event
PhD Proposal by Haiyang Zou
Primary tabs
THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING
GEORGIA INSTITUTE OF TECHNOLOGY
Under the provisions of the regulations for the degree
DOCTOR OF PHILOSOPHY
on Friday, June 8, 2018
1:00 PM
in IPST 114
will be held the
DISSERTATION PROPOSAL DEFENSE
for
Haiyang Zou
"Application of piezotronic and piezo-phototronics"
Committee Members:
Dr. Zhong Lin Wang, Advisor, MSE
Dr. Naresh Thadhani, MSE
Dr. Zhiqun Lin, MSE
Dr. Meilin Liu, MSE
Dr. Bernard Kippelen, ECE
Abstract:
Third-generation semiconductor materials have superior performance with high voltage resistance, high frequency, high efficiency, high-temperature resistance and high radiation resistance, that they look to be the “core” of a new generation of information technology, energy saving, and smart manufacturing. They can have broad application prospects in many fields, and have attracted the attention of governments, industries and research communities all over the world and achieved rapid development. The typical materials such as GaN and ZnO simultaneously exhibit piezoelectric, semiconducting and photoexcitation properties. The piezoelectric polarization charges can be utilized to control/tune the charge carrier transport characteristics in these materials (piezotronic effect), and also used to tune the generation, transport, separation and/or recombination of charge carriers (piezo-phototronic effect). The coupling of these properties in these materials has resulted in both novel fundamental phenomenon and unprecedented device application, leading to the increasing research interests in the emerging field of piezotronics and piezo-phototronics. Functional electronic and optoelectronic devices are presented to illustrate the practical applications of the piezotronic and piezo-phototronic effects. Fundamental physics about the piezotronics and piezo-phototronics are further studied in this work. This will help to develop a full understanding of piezotronics and piezo-phototronics, and it also enables the development of the better performance of optoelectronics. By applying the two effects in a wide range of electronics/optoelectronics, we have shown they are effective approaches to modify the physical properties in piezoelectric semiconductors and a useful tool to study the physical model in a complex system.
Groups
Status
- Workflow Status: Published
- Created By: Tatianna Richardson
- Created: 05/30/2018
- Modified By: Tatianna Richardson
- Modified: 05/30/2018
Categories
Keywords
Target Audience