event

Ph.D. Dissertation Defense - Sungjin Cho

Primary tabs

TitleAnomaly Detection based on the Estimation of Speed and Flow Mapping for Controlled Lagrangian Particles

Committee:

Dr. Fumin Zhang, ECE, Chair , Advisor

Dr. Patricio Vela, ECE

Dr. Xiaoli Ma, ECE

Dr. Michael West, GTRI

Dr. Jonathan Rogers, ME

Dr. Catherine Edwards, UGA, Co-Advisor

Abstract:

The main contribution of this dissertation is a set of algorithms that detect anomaly of autonomous underwater vehicles (AUVs) without sensors monitoring vehicle components. Only using trajectory information, the proposed strategy detects abnormal vehicle motion under unknown ocean flow. It has the potential for mitigating abnormal vehicle motion with path-planning and controller design of AUVs. The experimental results of the Georgia Tech Miniature Autonomous Blimp (GT-MAB) and Georgia Tech Wind Measuring Robot (GT WMR) in an indoor test bed verify the proposed strategy.

Status

  • Workflow Status:Published
  • Created By:Daniela Staiculescu
  • Created:10/25/2017
  • Modified By:Daniela Staiculescu
  • Modified:10/25/2017

Categories

Target Audience