Nano@Tech: To What Extent Can Complex Two-Phase Transport Be Manipulated at Micro/Nanoscale?

Primary tabs

Nano@Tech: To What Extent Can Complex Two-Phase Transport Be Manipulated at Micro/Nanoscale?

Dr. Chen Li, University of South Carolina, Department of Mechanical Engineering

Abstract: Two-phase transport is promising in addressing the cooling challenges facing high power microelectronics. Through evaporation of latent heat, two-phase heat transfer can enable a uniform temperature field under high working heat flux conditions along with a reduced pumping power, which  is highly desirable to realize highly effective direct cooling or to integrate two-phase microchannel cooling for future high power electronics. However, it is extremely challenging owing to the fact that two-phase transport performance is primarily governed and also limited by the detrimental aspects of complex two-phase flow in conventional channels. Two-phase transport at micro/nanoscale becomes more unpredictable due to the unfavorable size effects. Over the past decade, extensive progress has been made in understanding two-phase transport on various microchannel designs and configurations. It has been driven by the intrinsic scientific interest and needs of emerging applications to realize a favorable control of complex two-phase flows.

Most recently, Dr. Li’s group has devised several novel micro/nanoscale fluidic control methods. Through designing novel micro/nanoscale structures, these methods can (a) passively generate sustainable and on-demand mixing in the laminar flow regime in microchannels, or (b) intentionally reduce transitional two-phase flow regimes into a single and favorable flow regime for better heat transfer performance and flow characteristics, or (c) even reconstruct boundary layers to select and promote favorable two-phase flow structure and heat transfer modes during flow boiling in microchannels. Drastic enhancements have been demonstrated. In this talk, Dr. Li would like to share his recent progress in understanding these micro/nanoscale fluidic control methods.

Bio: Dr. Chen Li is an associate professor in the Department of Mechanical Engineering at the University of South Carolina (USC), Columbia. He received his Ph.D. in Mechanical Engineering from Rensselaer Polytechnic Institute (RPI) in 2006 and joined the ME department at USC as an assistant professor in 2009. His research focuses on two-phase heat transfer at micro/nanoscale with applications in nanosensors, high power electronic cooling, space power systems, thermal control of spacecraft, and thermal energy efficiency. He has published more than 40 journal papers. His research is supported by USC, DOD/ONR, NSF, DOD/DARPA, NASA, and DOE/ORNL totaling ~$4 M.


  • Workflow Status:
  • Created By:
    Christa Ernst
  • Created:
  • Modified By:
    Fletcher Moore
  • Modified:

Target Audience

    No target audience selected.