PhD Proposal by Kaushik Subramanian

Event Details
  • Date/Time:
    • Monday April 27, 2015 - Tuesday April 28, 2015
      10:00 am - 11:59 am
  • Location: CCB 345
  • Phone:
  • URL:
  • Email:
  • Fee(s):
  • Extras:
No contact information submitted.

Summary Sentence: Human-guided Exploration for Efficient Reinforcement Learning

Full Summary: No summary paragraph submitted.

Title: Human-guided Exploration for Efficient Reinforcement Learning

Kaushik Subramanian
Ph.D. Student
School of Interactive Computing
College of Computing
Georgia Institute of Technology

Date: Monday, April 27th, 2015
Time: 10 AM to 12 NOON ET
Location: CCB 345

Dr. Charles Isbell (School of Interactive Computing, Georgia Institute of Technology)
Dr. Andrea Thomaz (School of Interactive Computing, Georgia Institute of Technology)
Dr. Mark Riedl (School of Interactive Computing, Georgia Institute of Technology)
Dr. Thad Starner (School of Interactive Computing, Georgia Institute of Technology)
Dr. Peter Stone (Department of Computer Science, University of Texas at Austin)

Reinforcement Learning (RL) is the field of research focused on solving sequential decision-making tasks modeled as Markov Decision Processes. Researchers have shown RL to be successful at solving a variety of problems like system operations (logistics), robot tasks (soccer, helicopter control) and computer games (backgammon); however, in general, it is well-known that standard RL approaches do not scale well with the size of the problem. The reason this problem arises is that RL approaches rely on obtaining samples useful for learning the underlying structure. In this work we tackle the problem of smart exploration in RL, by using human interaction. We propose policy-based methods that serve to 1) effectively bias exploration towards important aspects of the domain and 2) balance the exploration-exploitation trade-off.

We propose a policy-based approach called Exploration from Demonstration (EfD) that uses an exploration policy learned from human demonstrations to provide performance speed-ups. We also show how we can obtain useful samples for EfD using concepts of Active Learning. We then present an approach that makes use of some of the inherent structure in the exploratory human demonstrations to assist Monte Carlo RL to overcome its limitations and efficiently solve large-scale problems. We then tackle the problem of balancing the exploration-exploitation trade-off in RL. We present a probabilistic method called Policy Shaping which combines human evaluations with Bayesian RL. We show how this approach provides performance speedups while being robust to noisy, suboptimal human signals. We implement our methods on popular arcade games and highlight the improvements achieved using our approach. We show how the proposed work on using humans to help agents efficiently explore sequential decision-making tasks is an important and necessary step in applying Reinforcement Learning to complex problems.

Additional Information

In Campus Calendar

Graduate Studies

Invited Audience
graduate students, PhD, proposal
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 14, 2015 - 8:22am
  • Last Updated: Oct 7, 2016 - 10:11pm