event

PhD Defense by William Laminack

Primary tabs

Title: Characterization of functionalized and unfunctionalized metal oxide nanoparticle interactions with gas mixtures on porous silicon.
Author: William Laminack
Date: April 8th at 2:30 
Location: Howey N110
Abstract:
In order to create more sensitive and accurate gas sensors, we have studied the interactions of gas mixtures on metal oxide nanoparticle decorated porous silicon interfaces. The nanoparticles control the magnitude and direction of electron transduction from the interaction of analyte gases to an extrinsic porous silicon semiconductor.  These interactions can be predicted by the Inverse Hard Soft Acid Base (IHSAB) principle. Moreover, the metal oxide nanoparticles can be functionalized with nitrogen and sulfur, modifying the oxide’s band structure. These modifications are demonstrated to change analyte interactions in line with the IHSAB concept and allow for light enhanced sensors. Further we looked at how the analyte gases interact with other analyte gases on the surface of these sensors. Studying these systems does two things, first the research will lead to cheaper, more accurate gas sensors, and second it helps explore the role of nanoparticles in modifying the interactions between bulk materials (porous silicon) and molecules (analyte gases).

Status

  • Workflow Status:Published
  • Created By:Danielle Ramirez
  • Created:03/23/2015
  • Modified By:Fletcher Moore
  • Modified:10/07/2016

Categories

Target Audience