event
ARC Colloquium: David Woodruff, IBM Almaden Research Center, San Jose, CA.
Primary tabs
Title: Low Rank Approximation and Regression in Input Sparsity Time
Abstract:
We improve the running times of algorithms for least squares regression and low-rank approximation to account for the sparsity of the input matrix. Namely, if nnz (A) denotes the number of non-zero entries of an input matrix A:
- we show how to solve approximate least squares regression given an n x d matrix A in nnz(A) + poly(d log n) time
- we show how to find an approximate best rank-k approximation of an n x n matrix in nnz(A) + n*poly(k log n) time
All approximations are relative error. Previous algorithms based on fast Johnson-Lindenstrauss transforms took at least ndlog d or nnz(A)*k time. We have implemented our algorithms, and preliminary results suggest the algorithms are competitive in practice.
Joint work with Ken Clarkson.
Groups
Status
-
Workflow Status:
Published -
Created By:
Elizabeth Ndongi -
Created:
04/11/2013 -
Modified By:
Fletcher Moore -
Modified:
10/07/2016
Categories
Keywords
Target Audience