CSE Seminar: Flavio Fenton

Primary tabs



High-performance-computing challenges for heart simulations


The heart is an electro-mechanical system in which, under normal conditions, electrical waves propagate in a coordinated manner to initiate an efficient contraction. In pathologic states, propagation can destabilize and exhibit chaotic dynamics mostly produced by single or multiple rapidly rotating spiral/scroll waves that generate complex spatiotemporal patterns of activation that inhibit contraction and can be lethal if untreated. Despite much study, little is known about the actual mechanisms that initiate, perpetuate, and terminate spiral waves in cardiac tissue.


 In this talk, I will motivate the problem with some experimental examples and then discuss how we study the problem from a computational point of view, from the numerical models derived to represent the dynamics of single cells to the coupling of millions of cells to represent the three-dimensional structure of a working heart. Some of the major difficulties of computer simulations for these kinds of systems include: i) Different orders of magnitude in time scales, from milliseconds to seconds; ii) millions of degrees of freedom over millions of integration steps within irregular domains; and iii) the need for near-real-time simulations. Advances in these areas will be discussed as well as the use of GPUs over the web using webGL.


 Bio: Flavio Fenton is an associate professor in the School of Physics at Georgia Tech. He is an accomplished scholar in the area of biophysics of the heart. He received his PhD from Northeastern University. He served as director of Electrophysiology Research at The Heart Institute at Beth Israel Medical Center in NY, and also worked as a research associate in Biomedical Sciences at Cornell University just prior to joining Georgia Tech.






  • Workflow Status:
  • Created By:
    Lometa Mitchell
  • Created:
  • Modified By:
    Fletcher Moore
  • Modified:


    No keywords were submitted.

Target Audience

    No target audience selected.