CSE Seminar: by Fei Sha

Event Details
  • Date/Time:
    • Friday March 18, 2011
      2:00 pm - 3:00 pm
  • Location: Atlanta, GA
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Guy Lebanon

lebanon@cc.gatech.edu

Summaries

Summary Sentence: Statistical Learning Algorithms for Discovering Hidden Structures in Data

Full Summary: No summary paragraph submitted.

Fei Sha
Assistant Professor in the Computer Science Department, U. of Southern California

Title:

Statistical Learning Algorithms for Discovering Hidden Structures in Data

Abstract:

Statistical modeling and inference of high-dimensional data is a common, yet challenging task in many areas. To address this important issue, exploiting hidden structures in data has become an increasingly appealing strategy. In this talk, I will describe two sets of work in that direction. I will start by describing how to identify low-dimensional structures which preserve probabilistic relations between random variables.  To this end, we develop and apply techniques from nonparametric statistics to assert statistical (conditional) independences.  I will then describe how to exploit sparse structures which lead to economical and interpretable probabilistic models. For this purpose, we investigate and propose sparsity-inducing regularization which result in sparse and low-rank solutions.  Through out the talk, I will illustrate the utility of both types of structures with several application examples in visualization, pattern classification, exploratory data analysis, etc.

This talk is based on joint work with my students and other collaborators, under the support by NSF, DARPA and Google.

Bio:

Fei Sha is an assistant professor at the Computer Science Department, U. of Southern California. He obtained his doctoral degree in 2007 from U. of Pennsylvania. Before joining USC in 2008, he spent some time at UC Berkeley as a postdoc and Yahoo Research as a research scientist. His primary research interest has been theory and application of statistical machine learning.

Additional Information

In Campus Calendar
No
Groups

Computational Science and Engineering, College of Computing, School of Computational Science and Engineering

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
cse seminar
Status
  • Created By: Lometa Mitchell
  • Workflow Status: Published
  • Created On: Mar 14, 2011 - 4:13am
  • Last Updated: Oct 7, 2016 - 9:54pm