PhD Defense by Angel J. Santiago-Lopez

Event Details
  • Date/Time:
    • Friday December 11, 2020
      3:00 pm - 5:00 pm
  • Location: Atlanta, GA
  • Phone:
  • URL: Zoom
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Development and Characterization of Viral Vectors for Stress-Dependent Transgene Expression in Neurons

Full Summary: No summary paragraph submitted.

Angel J. Santiago-Lopez 

BioE Ph.D. Dissertation Defense 

Friday, December 11th, 2020, 3:00 pm 

Zoom Link: https://emory.zoom.us/j/95109890334?pwd=ZjZWc0xMK3lNTjhVL0RzejE4Vytqdz09 

 

 

Advisor: 

Robert Gross, MD, PhD (Emory University) 

 

Committee: 

Michelle LaPlaca, PhD (Georgia Institute of Technology) 

Mark Prausnitz, PhD (Georgia Institute of Technology) 

Ravi Kane, PhD (Georgia Institute of Technology) 

Jae-Kyung (Jamise) Lee, PhD (University of Georgia) 

 

 

Development and Characterization of Viral Vectors for Stress-Dependent Transgene Expression in Neurons 

The overarching goal of this work was to design and characterize expression vectors that were responsive to physiological changes associated with neurodegenerative disease. The development of this molecular tool responds to the need for physiologically responsive constructs designed to prevent unwanted side effects related to transgene overexpression in current gene therapy interventions. To accomplish this, we adopted regulatory elements from the unfolded protein response (UPR), a homeostatic mechanism used by cells to cope with stress. Thus, by harnessing a biological signal associated with how cells respond to stress conditions, we created stress-responsive viral vectors and demonstrated their use in neurons. This thesis describes the characterization of these vectors by extensive time-lapse fluorescent microscopy assays in several in vitro models of proteostasis dysfunction, including er stress, proteasome inactivation, phosphatase inhibition, and alpha-synuclein overexpression. Collectively, our results demonstrate the feasibility of mobilizing cellular stress signaling to create physiologically-responsive viral vectors for use in neuroscience.  

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Dec 2, 2020 - 2:50pm
  • Last Updated: Dec 2, 2020 - 2:50pm