PhD Defense by Pedro J. Arias-Monje

Event Details
  • Date/Time:
    • Tuesday December 1, 2020
      9:30 am - 11:00 am
  • Location: Bluejeans
  • Phone:
  • URL: Bluejeans
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Advanced Dispersion Strategies of Carbon Nanofillers and their use to enhance Mechanical and Electrical Properties of Polyacrylonitrile Fibers

Full Summary: No summary paragraph submitted.

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

DOCTOR OF PHILOSOPHY

 

on Tuesday, December 1, 2020

9:30 AM


via

 

Bluejeans Video Conferencing

https://bluejeans.com/428601647

 

will be held the

 

DISSERTATION DEFENSE

for

 

Pedro J. Arias-Monje

 

“Advanced Dispersion Strategies of Carbon Nanofillers and their use to enhance Mechanical and Electrical Properties of Polyacrylonitrile Fibers”

 

Committee Members:

 

Prof. Satish Kumar, Advisor, MSE

Prof. Karl Jacob, MSE

Prof. Hendrik Heinz, ChBE, UCB

Prof. Kyriaki Kalaitzidou, ME

Prof. Suresh Sitaraman, ME

Prof. Naresh Thadhani MSE

 

Abstract:

 

This study focuses on making next generation of polyacrylonitrile fibers containing carbon nanofillers, namely carbon nanotubes (CNTs) and carbon black (CB). Mechanically strong and electrically conducting poly(acrylonitrile) (PAN) fibers were obtained by incorporating up to (a) 15 wt% single wall carbon nanotubes (SWNTs) and (b) 15 wt% carbon black (CB) and 2 wt% multiwall carbon nanotubes (MWNTs). These fibers with tensile modulus of up to 32.1 GPa and electrical conductivity of 2.2 S/m rival some intrinsically electrically conducting polymer fibers without doping. Nanocomposite carbon fibers with up to (a) 25 wt% SWNTs and (b) 24 wt% carbon black and 3 wt% MWNTs were also produced, and it is shown that CNT inclusion improves tensile modulus, while the inclusion of CB can be used to lower the carbon fiber cost, while lowering the mechanical properties. Stretchable PAN fibers with up to 60 wt% CB were also produced by increasing the diameter of the CB particles.

 

Fibers with high SWNT loading of 15 wt% were possible by wrapping the SWNTs with poly(methyl methacrylate) (PMMA). The mechanism of PMMA wrapping of SWNTs was studied experimentally and theoretically (using molecular dynamic simulation). It is shown that PMMA wrapping can be used to increase filler-matrix interaction in the polymer fiber. It is further shown that PMMA wrapping is not detrimental to the filler-matrix interaction in the resulting carbon fiber. This is despite the fact that PMMA does not have carbon yield.

 

Effect of the carbon nanotubes and carbon black fillers on PAN solution/dispersion rheology has been studied. The effect of these fillers on fiber processability and fiber structure is also comprehensively studied. Research also includes stabilization and carbonization of the conductive CB/PAN nanocomposite fibers via Joule Heating to obtain low-cost carbon fibers.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Nov 17, 2020 - 3:47pm
  • Last Updated: Nov 17, 2020 - 3:47pm