event

Master's Thesis Defense by Matthew S. Rager

Primary tabs

MASTER’S THESIS DEFENSE

by

Matthew S. Rager

Title: Moving Towards Stable Metal Halide Perovskite Solar Cells for use in Low-Earth Orbit

Thursday, August 15, 2019

3:00 PM
in MoSE 1226

Committee Members:

Prof. Zhiqun Lin, Advisor, MSE

Prof. Zhitao Kang, Co-advisor, GTRI

Prof. Jud Ready, Co-advisor, MSE/GTRI

 

Abstract:

Perovskite solar cells have recently emerged as a new leader in the third-generation of photovoltaics. Additionally, this new technology has the potential for application in several areas, including aerospace. The light-absorbing material in perovskite solar cells is an organometal halide compound with the perovskite structure (ABX3) where various atoms can be combined and interchanged to tune the optoelectronic properties. Typically, the A site is filled by organic, small- molecule cations (e.g. methylammonium and formamdinium) and/or inorganic atoms (e.g. Cs or Rb), the B site is filled by metal atoms (e.g. Pb2+ or Sn2+), and halide anions (e.g. I- and Br+) fill the X site. In this study, I fabricated organic-inorganic (MAPbI3 and Cs0.05(MA0.17FA0.83)Pb(I0.83Br0.17)3 and all-inorganic (CsPbBr3) perovskite solar cells with to improve the efficiency and stability with the goal of studying operation in low-Earth orbit environment. The harsh environment of space requires materials with good thermal stability due to large variations in temperature. The organic-inorganic solar cells are more efficient than all-inorganic, but the organic cation places limitations on the thermal stability of the material. Thus, all-inorganic perovskite solar cells (e.g. CsPbBr3) were fabricated and studied as the best candidates to survive the extreme conditions in low-Earth orbit.

Status

  • Workflow Status:Published
  • Created By:Jacquelyn Strickland
  • Created:08/11/2019
  • Modified By:Tatianna Richardson
  • Modified:08/12/2019

Categories

Keywords

Target Audience