event

Phd Defense by Anise Grant

Primary tabs

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

DOCTOR OF PHILOSOPHY

on Monday, May 20, 2019

10:00 AM
in MoSE 3201A

 

will be held the

 

DISSERTATION DEFENSE

for

 

Anise Grant

 

"Biopolymer and Synthetic Polymer Nanocomposite Reinforcement via Interfacial Assembly"

 

Committee Members:

 

Prof. Vladimir Tsukruk, Advisor, MSE

Prof. Rajesh Naik, MSE

Prof. Zhiquin Lin, MSE

Prof. Meisha Shofner, MSE

Prof. Valeria Milam, ME

 

Abstract:

 

Protein biopolymer composites bring together the tunability and flexibility of protein matrices and functionality of filler components.  Graphene-based biocomposites are particularly popular for design of aqueously processible and strong flexible electronics for sensing, nanowires, and semiconductors. However, a lot of trial and error is required to determine biopolymer and co-constituent chemistry as well as the assembly process needed for capitalize on their synergistic properties. The key to success is optimizing the material interface. This dissertation seeks to elucidate the mechanisms for favorable interfacial interactions and assembly  that yield mechanical strength enhancement using silk fibroin from Bombyx mori  silkworm cocoons, silk like protein suckerin from squid sucker ring teeth, and synthetic copolymers at inorganic interphases.  Silk is a well-studied protein that serves as platform for identifying drivers of interfacial interactions between graphene and proteins, and then show  how interface optimization leads to mechanical reinforcement.  Inter-protein applicability is demonstrated using suckerin as well as the additive nature of some triggers for self-assembly and interfacial adhesion.

 

Specifically, this dissertation focuses on the assembly of silk fibroin from Bombyx mori  silkworm cocoons, silk like protein suckerin from squid sucker ring teeth, and synthetic copolymers at inorganic interphases; the implications of assembly on mechanical performance; and how this relates to previous findings with SF.  The main drivers of assembly and interfacial binding studied here include temperature, shear force, hydropathy, and pH.  Surface topography and polymer chemistry/conformation were studied concurrently via atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). This data was supported by simulation to better define assembly mechanisms at the interface of biopolymers and inorganic 2D fillers and their timescales.  Then, mechanical characterization via bulging tests and scanning probe microscopy methods (SPM), force distance spectroscopy (FDS) and quantitative nanomechanical mapping (QNM).  Mechanical performance is evaluated at the macro and nanoscales using quantitative nanomechanical mapping, force distance spectroscopy, and buckling tests. Overall, this study draws a vital link between the structure of the biopolymer and 2D filler, processing applied, and mechanical performance ; thereby providing a roadmap for further optimization of biopolymer-based nanocomposites through interface-minded design.

Status

  • Workflow Status:Published
  • Created By:Tatianna Richardson
  • Created:05/09/2019
  • Modified By:Tatianna Richardson
  • Modified:05/09/2019

Categories

Keywords