event

PhD Defense by D. Joshua Parris

Primary tabs

In partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy in Biology

in the 

School of Biological Sciences

 

D. Joshua Parris

 

will defend his dissertation

 

MICROBIOME COMMUNITY CHANGE IN THE GUTS OF MARINE FISH: FEEDING AND LIFE STAGE TRANSITION AS SIGNIFICANT ORGANIZING FACTORS

 

Friday, November 2nd, 2018

1:00 PM

Ford ES&T Room L1118

 

Thesis Advisor:

Dr. Frank Stewart

School of Biological Sciences

Georgia Institute of Technology

 

Committee members: 

Dr. Mark Hay

School of Biological Sciences

Georgia Institute of Technology

 

Dr. Tom DiChristina

School of Biological Sciences

Georgia Institute of Technology

 

Dr. Julia Kubanek

School of Biological Sciences

Georgia Institute of Technology

 

Dr. Kostas T. Konstantinidis

School of Civil and Environmental Engineering

Georgia Institute of Technology

 

 


 

Summary

All animals harbor microbial communities (microbiomes) that play vital roles in host health, development, behavior, and evolution. Determining the processes that regulate microbiome diversity and function is therefore a central question in biology. Numerous investigations have sought to quantify the influence of factors such as diet, host genotype, and environment on gut microbiome assembly, taxonomic composition, and function (Spor et al. 2011, Koenig et al. 2011, Myles et al. 2013). However, these studies have been mostly limited to a handful of model or commercially important host systems. We remain naïve in our understanding of how the importance of different microbiome assembly processes might vary among diverse hosts. This is especially true for the most phylogenetically and ecologically diverse of the vertebrate groups, teleost fishes. In this dissertation, I first describe compositional changes in the gut microbiome associated with the transition from a pelagic larval stage to reef settlement in damselfish (Pomacentridae) and cardinalfish (Apogonidae). Results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish families. Next, I use the clownfish Premnas biaculeatus to test how diversity, predicted gene content, and gene transcription of the microbiome vary over a diurnal period following a feeding event. Results confirm feeding as a major restructuring force in intestinal microbiomes over a short timeframe (hours). Finally, I describe ongoing work to characterize the phylogenetic novelty and functional capability of a fish-associated Endozoicomonas bacterium. While this genus has been identified as a symbiont of marine invertebrates, its role in the guts of fish remains unknown.  Together, these studies advance our understanding of the diversity and potential function of the fish microbiome, setting the stage for studies to identify the microbiome’s effect on fish health and ecology. 

 

Status

  • Workflow Status:Published
  • Created By:Tatianna Richardson
  • Created:10/18/2018
  • Modified By:Tatianna Richardson
  • Modified:10/18/2018

Categories

Keywords