event

Phd Defense by Ruilong Ma

Primary tabs

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

 

DOCTOR OF PHILOSOPHY

 

on Friday, June 15, 2018

2:00 PM

in MoSE 3201A

 

will be held the

 

DISSERTATION DEFENSE

 

for

 

Ruilong Ma

 

"Micro-Patterned Chemistry and Structure in Layered Carbon Nanocomposites"

 

Committee Members:

 

Dr. Vladimir V. Tsukruk, Advisor, MSE

Dr. Meisha L. Shofner, MSE

Dr. Paul S. Russo, MSE

Dr. Andrei G. Fedorov, ME

Dr. Yulin Deng, ChBE

 

Abstract:

 

The quest for humankind’s increased capabilities in gathering information, analyzing data, and controlling our surrounding environment is leading to a proliferation of connected physical objects that can sense, compute, and communicate.  Conventional classes of electronic materials such as metals and semiconductors cannot meet this new demand alone due to challenges in scale, and ability to function in new use-environments such as on clothing, on skin, and in the human body. 

 

In this research, 1D biopolymers (silk fibroin, cellulose nanocrystals) and 2D synthetic components (functionalized graphenes) are assembled into bio-derived nanocomposite papers.  Through post-processing conversion of geometry and surface chemistry at the microscale, these biopapers are transformed into a platform for flexible and stretchable electronics for diverse applications including stretchable wiring, energy harvesting, energy storage, and haptic sensing.  The key to realizing these applications is leveraging the intrinsic properties of nanoscale components through the controlled, localized application of annealing, cutting, printing and stenciling.  Elements of directed microstructural design include patterned voids to generate algorithmic pop-up deformations, partial cuts to inhibit metastable buckling, conductive traces to enable sensory circuits, and interdigitated electrodes to support double layer capacitance.  The set of techniques and the structure-property relations explored in this work can serve as a framework for understanding microstructural manipulation that is generalized across layered nanocomposites.

Status

  • Workflow Status:Published
  • Created By:Tatianna Richardson
  • Created:06/12/2018
  • Modified By:Tatianna Richardson
  • Modified:06/12/2018

Categories

Keywords