Biomechanics and Remodeling in Native and Engineered Arteries

Event Details
  • Date/Time:
    • Tuesday April 20, 2010
      8:30 am - 9:30 am
  • Location: IBB 1128
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
Colly Mitchell
Parker H. Petit Institute for Bioengineering and Bioscience
Contact Colly Mitchell
404-894-5982
Summaries

Summary Sentence: Rudy Gleason, PhD, Asst. Professor, School of Mechanical Engineering

Full Summary: Biomechanics and Remodeling in Native and Engineered Arteries

IBB Breakfast Club Seminar - Rudy Gleason, PhD, Asst. Professor, School of Mechanical Engineering, Georgia Tech

Abstract
Despite advances over the past 25 years, a pressing clinical need remains to develop small diameter tissue engineered blood vessels (TEBV) with low thrombogenicity and immune responses, suitable mechanical properties, and a capacity to remodel to their environment. One promising technology for developing a TEBV is the self-assembly approach. This approach consists of culturing vascular cells to form sheets of cells and extracellular matrix, then rolling these sheets around a mandrel and culturing them to form a tubular structure. Sheets made from different cell types (e.g. SMCs versus fibroblasts) can be combined to produce heterogeneous vessels containing media-like and adventitia-like layers; vessels may also be seeded with endothelial cells to form a functional endothelium. This presentation reviews recent studies conducted in our lab that characterize the biomechanical properties of both native arteries and engineered tissues and the implications of these findings on defining appropriate design criteria for a coronary by-pass graft. Biomechanical testing and parameter estimation to characterize the mechanical behavior of the media-like and adventitia-like self assembly-derived TEBV are be presented and compared to TEBV constructed from competing tissue engineering strategies (e.g., collagen gels), as well as representative data from human coronary arteries taken from the literature. The predictive capability of the constitutive model is be demonstrated by comparing modeling predictions to experimental data from two-layer self assembly-derived TEBV. Finally, modeling results are presented to test novel fabrication strategies to control the mechanical behavior of self assembly-derived TEBV.

Gleason Lab

Continental breakfast will be provided.

Additional Information

In Campus Calendar
No
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
Breakfast Club Seminar Series, Georgia Tech, IBB, Rudy Gleason, School of Mechanical Engineering
Status
  • Created By: Colly Mitchell
  • Workflow Status: Published
  • Created On: May 20, 2010 - 7:44am
  • Last Updated: Oct 7, 2016 - 9:51pm