event

Ph.D. Dissertation Defense - Spyridon Pavlidis

Primary tabs

Investigation of Wide Band Gap Semiconductors:  InGaZnO TFTs for Chemical Sensing and Hybrid GaN/Organic High-Frequency Packaging and Circuits

Committee:

Dr. Oliver Brand, ECE, Chair , Advisor

Dr. Papapolymerou, ECE, Co-Advisor

Dr. John Cressler, ECE

Dr. Bernard Kippelen, ECE

Dr. Burhan Bayraktaroglu, Air Force Research Lab

Dr. Christos Alexopoulos, ISyE

Abstract: 

Wide band gap (WBG) semiconductors offer a number of unique properties not achievable by traditional silicon, such as optical transparency in the visible wavelength regime, high carrier mobility and high voltage/high power operation. This thesis advances the development of two WBG semiconductors, indium gallium zinc oxide (InGaZnO) and gallium nitride (GaN), for chemical sensing and high-frequency applications, respectively. Whereas previous works have relied on high temperature fabrication and/or device operation that are incompatible with flexible and low-cost substrates, this work successfully exploits low temperature microfabrication methods to manufacture InGaZnO thin film transistors (TFTs) for chemical sensing at room temperature. Gas-phase sensing of volatile organic compounds is demonstrated, and it is shown that sensitivity can be improved through the use of a polymer capping layer. For liquid-phase sensing, reliable passivation remains a challenge. In response, this works shows that low temperature atomic layer deposition of TiOx can be used to create dual-gate InGaZnO TFTs with Super Nernstian pH sensitivity and long term reliability within a liquid environment. GaN devices and circuits offer best-in-class high power performance, yet packaging remains a critical issue for practical applications. Traditional methods rely on expensive materials that are lossy at radio frequencies and above. This work proposes a novel, flip-chip bonding packaging technique that involves GaN die encapsulation within multi-layer organic laminates that are both low-cost and low-loss. A 5.4 W hybrid GaN/organic encapsulated power amplifier operating in the X-Band is demonstrated for the first time.

 

 

Status

  • Workflow Status:Published
  • Created By:Daniela Staiculescu
  • Created:06/06/2016
  • Modified By:Fletcher Moore
  • Modified:10/07/2016

Categories

Target Audience