PhD Dissertation Defense by Arridhana Ciptadi

Event Details
  • Date/Time:
    • Monday March 14, 2016
      4:00 pm - 6:00 pm
  • Location: TSRB 223
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Interactive Tracking and Action Retrieval to Support Human Behavior Analysis

Full Summary: No summary paragraph submitted.

COMMITTEE:

 

Dr. James M. Rehg, School of Interactive Computing, Georgia Tech (Advisor) Dr. Gregory D. Abowd, School of Interactive Computing, Georgia Tech

(co-Advisor)

Dr. Agata Rozga, School of Interactive Computing, Georgia Tech Dr. Daniel Messinger, Department of Psychology, University of Miami Dr. Pietro Perona, Division of Engineering and Applied Science, California Institute of Technology

 

ABSTRACT

 

The goal of this thesis is to develop a set of tools for continuous tracking of behavioral phenomena in videos to support human behavior study. Current standard practices for extracting useful behavioral information from a video are typically difficult to replicate and require a lot of human time. For example, extensive training is typically required for a human coder to reliably code a particular behavior/interaction. Also, manual coding typically takes a lot more time than the actual length of the video (e.g., it can take up to 6 times the actual length of the video to do human-assisted single object tracking). The time intensive nature of this process (due to the need to train expert and manual coding) puts a strong burden on the research process. In fact, it is not uncommon for an institution that heavily uses videos for behavioral research to have a massive backlog of unprocessed video data.

 

To address this issue, I have developed an efficient behavior retrieval and interactive tracking system. These tools allow behavioral researchers/clinicians to more easily extract relevant behavioral information, and more objectively analyze behavioral data from videos. I have demonstrated that my behavior retrieval system achieves state-of-the-art performance for retrieving stereotypical behaviors of individuals with autism in a real-world video data captured in a classroom setting. I have also demonstrated that my interactive tracking system is able to produce high-precision tracking results with less human effort compared to the state-of-the-art. I further show that by leveraging the tracking results, we can extract an objective measure based on proximity between people that is useful for analyzing certain social interactions. I validated this new measure by showing that we can use it to predict qualitative expert ratings in the Strange Situation (a procedure for studying infant attachment security), a quantity that is difficult to obtain due to the difficulty in training the human expert.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
PhD Dissertation Defense
Status
  • Created By: Jacquelyn Strickland
  • Workflow Status: Published
  • Created On: Feb 29, 2016 - 9:47am
  • Last Updated: Oct 7, 2016 - 10:16pm