Penalized regularization for functional linear models

Event Details
  • Date/Time:
    • Thursday November 6, 2008
      10:00 am - 11:00 am
  • Location: Executive Classroom, 228 Main Bldg.
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    $0.00
  • Extras:
Contact
Anita Race
H. Milton Stewart School of Industrial and Systems Engineering
Contact Anita Race
Summaries

Summary Sentence: Penalized regularization for functional linear models

Full Summary: Penalized regularization for functional linear models

TITLE: Penalized regularization for functional linear models

SPEAKER: Dr. Tim Randolph

ABSTRACT:

In a 'functional linear model' the aim is to estimate the linear relationship between a scaler response, y, and a random L2 function, x. This formally fits into the classical regression model, y = X*b + e, but the estimation of b is inherently ill-posed. A common method used to address this problem regularizes the solution by penalizing L*b, where L is a linear operator. This constrains b (which is nominally any L2 function) by bounding the norm of L*b. Special cases include Marquardt's generalized regression, Hoerl's ridge regression (L=I) and

Tikhonov-Philips' regularization (L=D, a differential operator). This talk considers (linear) penalized estimates in general and their expression via generalized singular vectors of the pair (X,L). This provides perspective on the functional structure of an estimate and on criteria for choosing the penalty operator. Corresponding explicit expressions for bias and variance provide insight regarding the trade-off between the properties of L versus X.

Additional Information

In Campus Calendar
No
Groups

H. Milton Stewart School of Industrial and Systems Engineering (ISYE)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
Linear
Status
  • Created By: Anita Race
  • Workflow Status: Published
  • Created On: Oct 12, 2009 - 4:37pm
  • Last Updated: Oct 7, 2016 - 9:47pm