

Maestro: Improving Kinesthetic Skill Learning of Music Conductors

Yonatan Sasson

Advisors: Prof. Andrea Brown & Prof. Gil Weinberg
Center for Music Technology

Georgia Institute of Technology

INTRODUCTION

- ☐ The use of technology in music conductor training is a growing area of interest
- ☐ The expressive, subtle and meaning-rich conducting gestures serve as a fruitful ground for innovative research in artificial vision, gesture following and musical mapping
- ☐ Very little work has been done in capturing subtle and sophisticated gestures that are aimed at improving kinesthetic skills for conductors, combining tempo, duration, articulation, and dynamics
- ☐ System that allows real-time and offline audio-visual feedback will allow limitless practice opportunities for musicians and will allow accurate evaluation and advancements in music education

INNOVATIONS

The research project suggests innovations in three different fields:

- I. Complex gesture tracking and sensing
- II. Gesture classification through machine learning
- III. Audio feedback through Physical Modeling based sound synthesis with sophisticated one-to-many mapping of a single gesture to a rich audio feedback

VISION AND GOALS

- ☐ We propose to develop technology to improve learning of kinesthetic skills of conducting gestures, as well as pedagogy that will utilize the proposed system
- ☐ The system will give a student the ability to practice conducting skills while receiving audio-visual performance feedback in real-time
- ☐ Using the virtual learning tool, we seek to enhance current conducting pedagogy and increase the mastery rate of kinesthetic conducting skills

METHODS

The system consists of four parts: a conductor's baton; a tracking/sensing system; a computer vision application to analyze the gestures, and an interface for audio/video feedback that uses physical modeling to synthesize sounds.

Wireless Baton

A real physical conducting baton, connected via Blue Tooth, allows the simulation of a realistic conducting environment

Tracking & Sensing

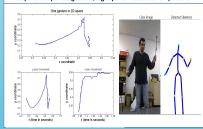
High speed tracking system (~ 100 Hz) allows the detection and analysis of subtle nuances in performed gestures

Machine learning

Novel classification techniques are used to map the performed gesture in 3D space to a set of parameters, and finally to an auditory feedback

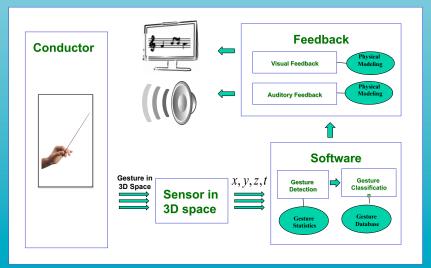
Physical Modelling

Analytical models of acoustic instruments allow the synthesis of naturally sounding yet computergenerated audio feedback


RESULTS

The current system supports the following:

- ☐ Detection of discrete conducting gestures
- ☐ Classification of gestures with respect to dynamics, articulation, and duration
- ☐ Single tone audio feedback
- ☐ Gesture visual feedback


Example of real-time visual feedback

Left panel: captured gesture; right panel: feedback on posture

FUTURE WORK

- ☐ First iteration of the system is scheduled to be tested over the summer of 2012
- ☐ Maestro will be used as an educational auxiliary tool for a first year undergraduate conducting course in the University of North Carolina at Greensboro the following semester
- ☐ Future iterations of the system are planned to include analysis of musical information conveyed from torso and left hand gestures
- ☐ A user friendly interface to allow individual practice and assignment management for instructors

