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1 Introduction

Let n, p, q ∈ Z+ with n = p + q. Let c ∈ Rp, d ∈ Rq and let K ⊆ Rn be a convex set. A convex mixed
integer program (CMIP) is an optimization problem of the form

inf{cTx+ dT y | (x, y) ∈ K ∩ (Zp × Rq)}. (1)

A cutting plane for K is a linear inequality αx+ βy ≤ γ that is satisfied by all (x, y) ∈ K ∩ (Zp ×Rq).
Let F be a collection of cutting planes. A cutting plane algorithm to solve (1) that uses cuts in F can be
described as follows:

Cutting plane Algorithm.

1. Solve inf{cTx+ dT y | (x, y) ∈ K}. If the optimal solution (x∗, y∗) satisfies x∗ ∈ Zp, stop.

2. Otherwise, find a cutting plane αx+ βy ≤ γ in F such that αx∗ + βy∗ > γ. Redefine K := {(x, y) ∈
K |αx+ βy ≤ γ}. Repeat.

Some conditions on the family F that are necessary to obtain a well-defined algorithm are: (i) The
cutting plane in the second step must exist. (ii) The procedure should be able to terminate in a finite
number of steps. Therefore, it is of interest to answer the following question:

Are there non-trivial families of cutting planes that satisfy conditions (i) and (ii)? (∗)

For pure integer problems (p > 0, q = 0) question (∗) has been answered affirmatively in the case the set
K is a rational polyedron or a compact convex set: the family of Chvátal-Gomory cuts satisfies conditions
(i) and (ii) (see [6, 15, 19]). In the rest of this document we will focus our attention on the mixed-integer
case.

2 What is known in the Mixed-integer case (p, q > 0):

In the general mixed-integer case, the family of Chvátal-Gomory cuts does not comply with (i) and (ii)
(see, for example, [8]). Therefore, we need to use a larger family of cutting planes. A polyhedron L ⊆ Rn is
said to be lattice-free if L does not contain points of Zp×Rq in its relative interior. An integral lattice-free
cut for K is a linear inequality valid for conv(K \ rel.int(L)), where L is a maximal integral lattice-free
polyhedron.1 The integral lattice-free closure of K is the set of points that satisfy all integral lattice-free
cuts for K. Denote L(0)(K) = K. For i ≥ 1, we define the ith integral lattice-free closure of K, denoted
by L(i)(K), as the integral lattice-free closure of L(i−1)(K).

1We note here that it is known that finding cutting planes for conv(K \ rel.int(L)) can be done in polynomial time in some
special cases: rational polyhedra (see [3, 4, 7]) and second order conic representable sets (see [5]).

1



2

2.1 Rational polyhedral case

Theorem 1 ([17, 12, 1]). Let P = {x ∈ Rn |Ax ≤ b} be a rational polyhedron (that is, the matrices A and
b are defined by rational numbers). Then

1. L(i)(P ) is a rational polyhedron for all i ≥ 0.

2. There exists t ≥ 0 such that, L(t)(P ) = conv(P ∩ (Zp × Rq)).

Observe that Theorem 1 implies that the family of integral lattice-free cuts satisfies conditions (i) and
(ii) in the case of rational polyhedra. For a related result see [16]. Notice that the collection of maximal
integral lattice-free polyhedra is finite up to affine unimodular transformations (see [2]).

2.2 Compact convex case

In the general compact case there have been some attemps to define a family of cutting planes satisfying
(i) and (ii) by using mixed-integer linear outer-approximations of the original set (see [14, 20]). However,
there are some issues with this approach: First, it only works when the compact convex set is defined by
convex functions that satisfy some smoothness conditions and a strong constraint qualification holds at
the solution of some related non-linear programming problems. Second, the outer-approximations used to
obtain cutting planes belonging to the family are not necessarilly defined by rational data.

3 Research proposal: Some extensions to compact convex sets

Our main research objective is to study whether question (∗) has a positive answer in the case of general
compact convex sets. In order to address this question, we believe that it is necessary to extend some
properties of mixed-integer linear sets that are crucial in the proof of Theorem 1. We describe some of
these properties next.

1. Structural result. When P is a rational polyhedron, as a consequence of PI := conv(P ∩(Zp×Rq))
having a finite number of maximal faces, we obtain that there exists a finite collection of maximal
lattice-free polyhedra T1, . . . , TN such that

PI =

N⋂
i=1

conv(P \ rel.int(Ti)). (2)

In the general compact convex set case, KI := conv(K ∩ (Zp × Rq)) may have an infinite number of
maximal faces. Thus, it is not clear if a representation of KI as in (2) is possible. Currently, we have
been able to prove such a result for some special cases (n ≤ 3 or p = 1).

2. Finiteness result. Notice that for general compact sets we cannot expect to describe L(1)(K) with
a finite number of cutting planes. However, we can ask if there exists a finite family of maximal
integral lattice-free sets L1, . . . , LM such that

L(1)(K) =

M⋂
i=1

conv(K \ rel.int(Li)).

We will base the study of this problem in some recent results about closures for general compact
convex sets (Chvátal-Gomory closure [9, 10, 13, 18]; Split closure [11]).

3. Characterization of KI . We would like to prove that there exists t ≥ 0 such that, L(t)(K) = KI .

Observe that if we are able to prove properties (1.),(2.) and (3.) we will obtain a generalization
of Theorem 1 to the case of compact convex sets. We expect this result to led to the construction of
well-defined algorithms for solving general convex mixed-integer programs.
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