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1 Introduction

The cutting plane algorithm is a commonly used method for optimization in the field of integer
programming. An integer programming problem is specified by

max cTX subject to

AX ≤ b
X ∈ Zn.

The cutting plane method solves a linear relaxation of the problem obtained by dropping the inte-
grality constraint. Given an integer programming problem, it proceeds as follows: If the optimum
solution found is not integral, then a cut inequality separating the optimum from all integer so-
lutions is added to the LP and the LP is solved again; this two-step procedure is repeated till an
integral solution is reached. Gomory showed that cuts of the form

bλTAcX ≤ bλT bc for some λ ≥ 0

always exist if the current optimum is not integral and one such cut can be found in polynomial
time [2]. We will denote the cuts that are generated by this method as Gomory cuts.

There exist input instances for which the number of Gomory cuts needed to identify an integer
optimum using the cutting plane algorithm is arbitrarily large [5]. Yet, cutting plane algorithms
are widely-used in practice in popular solvers to solve integer programming problems. Through
my research, I would like to explore the complexity of cutting plane algorithms for two candidate
problems: (1) the minimum cost perfect matching problem and (2) probabilistic instances of the
integer programming problem.

2 The minimum-cost perfect matching problem

Given a graph G, a set F of pairwise non-adjacent edges in G is called a perfect matching if for
every vertex v ∈ V , there exists an edge f ∈ F that is adjacent to v. The input to a minimum
cost perfect matching problem consists of a graph G = (V,E) with edge costs c : E → R. The
objective is to find a minimum-cost perfect matching, if one exists. Edmonds showed that the
perfect matching polytope P (describing the convex hull of characteristic vectors ψ ∈ {0, 1}|E| of
perfect matchings in G) is specified by the following set of inequalities [1]:

Xe ≥ 0 ∀e ∈ E (non-negativity constraints)

X(δ(v)) = 1 ∀v ∈ V (degree constraints)

X(δ(U)) ≥ 1 ∀U ⊆ V, |U | ≥ 3, |U | odd (blossom inequalities).

The LP to solve the minimum-cost perfect matching problem is thus specified by min
∑

e c(e)Xe :
X ∈ P . Even though the LP is exponential in size, there exists an efficient separation oracle for
the matching polytope [4] and hence the LP can be solved in polynomial time (by the Ellipsoid
algorithm [4]). We denote the polytope specified by only the non-negativity and degree constraints
as the fractional matching polytope FP (G).

Grötschel and Holland [3] suggested a cutting plane algorithm for this problem: solve the LP
min

∑
e c(e)Xe : X ∈ FP (G). If the solution is not integral, add a blossom inequality as a cutting
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plane and repeat. They showed experimental evidence to suggest that the number of cuts needed
to arrive at an integral solution for random edge weights is small. My goal is to show that this
cutting plane algorithm terminates after the addition of a polynomial(|V |) number of cuts. In order
to show a polynomial bound on the number of cuts, we need to show that the LP optimum makes
progress towards an integer solution.

Any extreme point solution to FP (G) is half-integral and thus its support consists of disjoint
edges and disjoint odd cycles. The natural cuts to add are (a subset of) the cycles obtained. In
work with L. Vegh and S. Vempala, I have shown that adding an arbitrary subset of these cycles
keeps the next solution half-integral. I would like to show that this process can be continued (with
a natural extension in later steps) so that (a) the half-integrality property is maintained and (b) the
number of odd cycles in the support is nondecreasing and decreases every O(n) steps. Proving this
would give the first rigorous bound on an efficient cutting-plane method for a well-known problem.

3 A Randomized Cutting Plane Algorithm

Gomory’s cuts are obtained by taking a particular linear combination of the facets defining the
current basic feasible solution and rounding down the coefficients of the resulting hyperplane.
Gomory showed that the number of cuts needed in the cutting plane algorithm implementing
Gomory cuts is at most 2n for arbitrary binary integer programs [2].

A valid cutting plane (including Gomory’s cuts) can be obtained by considering a hyperplane
that is tangential to the given polytope at the current extreme point solution and rounding down
the coefficients of this hyperplane. This immediately suggests a random choice for the cutting
planes: take a random combination of the facets defining the current basic feasible solution and
apply the round-down technique. I would like to investigate if the complexity of the cutting plane
algorithm improves if it implements random cuts.

Formally, the random cuts are obtained as follows: the current basic feasible fractional solution
X∗ is specified by n facets. Let I denote the set of indices of the facets of the polytope that
define X∗. Then, X∗j = ([A]−1I [b]I)j for j ∈ I and X∗j = 0 for j 6∈ I. Consider the lattice

L∗ = {y ∈ Qn : yT [A]I ∈ Zn}. Let S = {y ∈ Qn : yT [b]I 6∈ Z}. After obtaining y ∈ L∗ ∩ S, it
is straightforward to obtain a cut that separates X∗ from all integer solutions by the round-down
technique. The set L∗ is the dual lattice of the lattice generated by the columns of [A]I . If X∗ is
not integral, then for every basis {y1, · · · , yn} of L∗, at least one of yTi b 6∈ Z among i ∈ {1, · · · , n}.
Further, if λi is chosen uniformly in {0, 1} for each i ∈ {1, · · · , n}, then with probability at least
1/2,

∑n
i=1 λiyi ∈ L∗ ∩ S. Thus a random {0, 1}-combination of the rows of ([A]−1I )T leads to a

cut separating the current LP optimum with probability at least 1/2. (Instead of a random {0, 1}-
combination, if one considers the basis vector yi such that yTi b 6∈ Z, then it is equivalent to the
Gomory cut).

I would like to address the following questions about the cutting plane algorithm using random
cuts.

1. If the cutting plane algorithm uses random cuts, then what is the expected number of cuts
needed to identify an integer solution for arbitrary binary integer programs? Can we show a
sub-exponential bound?

2. Is there a natural distribution on the input instances of the integer program for which the
cutting plane algorithm using random cuts converges to an integer solution using polynomial
number of cuts in expectation?

3. Consider the random polytope determined by m random tangential hyperplanes to a n-
dimensional sphere of radius R centered around an arbitrary point X0 ∈ Rn. In joint work
with S. Vempala, I have shown that for R = Ω(

√
log (2m/n)), such a random polytope

contains an integer point with high probability. For a fixed direction c, what is the expected
number of cuts needed in the cutting plane algorithm using random cuts to find an integer
optimum in the random polytope? For R = O(

√
log (2m/n)) and a fixed direction c, what is

the expected number of cuts to find an optimum integer point along c or to certify that the
polytope does not contain an integer point?
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