Georgia & MINIMUM-EUEL POWERED DESCENT IN THE

Tech}y PRESENCE OF RANDOM DISTURBANCES
DS L J.Ridderhof* and P. Tsiotras?

1Graduate Student, 2Deans Professor, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA P resentation I D 5 3 7

_ Abstact Problem Formulation Simulation Results

It has recently been shown that minimum-fuel We want to design a control pair (u, K') to achieve MSL divert scenario: 1,500 m altitude, 125 m/s
powered descent guidance can be solved onboard soft landing at final time ¢, > 0 velocity at flight path angle -36.9 deg. Command
as a convex optimization problem. It therefore H(t;) =0, Py(t;) =P divert to site 2,000 m behind vehicle in plane of
. . . T ) X - Zfo .
presents itself as a promising technology to enable c ’ = od 1o the set velocity vector.
: .. ontrol is constrained to the se .
future planetary exploration missions. However, P, = diag(200, 200, 200, 10, 10, 10)
since this approach is formulated as a deterministic Q={z LA :p = [zl Zpy} P, = diag(10,10,10,1,1,1)
optimal control problem, the resulting guidance law Enforce constraint in probability (Gaussian dist.) Enforce that control is in bounds with probability
is only designed for a single pair of initial and target Prfu [0 = / flz i P)dz =1—P 99.9%. Settings summarized below:
: . | o y Yy L u —
states without external disturbances. Q Property T -
Minimize mean fuel cost t Wet mass me 1005 ”
. f
We attempt to extend this approach to the more J(7) = / alt) Calt Propellant mass 44846050 " Eg/N
. « ey _ . o : e- g/N sec
general case of steering initial position and velocity 0 P, diag(200, 200,200, 10,10,10) m?/s?, m?
distributions to target distributions, while Py, diag(10,10,10,1,1,1) m?/s%, m
. . . : . . - s A In Mean 7o (1500, 0, 2000) m
considering Brownian motion process noise acting Control : e Admisible control ;@ (75,0, 100) /s
on the SySte m. Admissible \\‘\ [ f \ a8 ((ijizzl:irl:llltion 1
control region /' i /A g L[ - _ . . : :
Glide slope ; ] / /{ £ [( \\ 0.8 7 ———————
System Model onele 3 0.905 | | .
> £ 0.6
=
Powered descent with random external force £ E e B | N
: .
. 2 =1 e e | eee——
dr = (u/m + g)dt + (v/m)dw 09985} | t=10 - Toil
Mean constrained t =50 0.2 Mea.n
Assume control structure ) Final state distribution reglon 2¢ - — — L
0.998 - 0 | | | |
_ ~ _ ~ _ 0 0.5 1 0 20 40 60 80
U = u—|—K.T EHUH — EHU"‘U” ~ HUH . . . Throttle Percent Time, sec
. Thrust Constraint in Probability . . . . . . . .
Mass change is given by —
. J— o e [ . ] [ [] 1'5 i Trial |
m = —a||ull Probability constraint is equiv. to constraining the — — Glide Slope
s
[ [ [ 'M
The mean trajectory therefore satisfies mean control vector to the set s 1 :
=
2= — Pu _ > . 7 E
r=u/m-+g Q@ —{UGQ-/f(%U,Pu)dzzl—ﬂ}- =
0 0.5 F -
The disturbance is given by the stochastic system Relax with max singular value o2 = o2__(P,) - - = -
~ ~ 0 — T — —|‘ | | | | | .
dr = (u/m)dt + (fy/m)dw g;rrlszﬁge LA Exact mean Using radia Symmetry’ 0 0.5 1 1.5 2 2.5 3 3.5 4
. . . mean constrained ;:;)nis;rlained Downrange, km
with state covariance subject to region. ()¢ = 0g p7 = min{||al : u € QF},
. 5 N Left: probability that u is in () is plotted against the mean throttle percent at
Py = (A T BmK)Px + 1 (A T BmK)T Ty BmB"Zl s N\ pd _ maX{HﬂH = QU} different times in the simulation. The values of p{and p9J are determined by
\ '- 2 ' pJ: the left and right intersections of the probability curve with the dashed line
~_\ 3 . for 1 — [ where f = 0.001. Right: mean throttle percent and throttle
A= 0 1 , B, = { 0 | > Then If histories from select Monte Carlo trials. The shaded region contains 99.9% of
0 0 I/m(t) pclr (t) < Hﬂ(t)H < pg (t) throttle histories. Bottom: Monte Carlo trials with 99.9% of trajectories in the
. o - shaded region.
and control covariance ) .
. the probability
Pu — E {L’aT — K P:IZ K T \ control region : : : : .
au’] ! constraint is satisfied Conclusions / Future Work
In Summary’ by assumlng mean Control |S much " *Area under curves in a(;)rglissible control region = 1-3
Probability 4 P~ P2~ .
larger than feedback component we separate mean density ' Conclusions
and disturbance into separate but interdependent * Presented a stochastic extension to optimal
systems. powered descent that guarantees throttle
constraints in probability
Closed-Loop Control Variance e Constraints on feedback control introduced a
4 : | coupling between trajectory and control
Consider the scalar stochastic system ] Reion o e e T, * This work constrained that the control would not
dz = (a — bk)zdt + duw p=2(a—bk)p + 1 | Admissible control region : saturate, but a better constraint would be on the
— , —

Mean and Covariance Steering final state covariance (allowing saturation)

Future Work

 May be possible to generalize theory to any
minimum-fuel optimal control problem where
there is feedback

 Handle parametric uncertainty

e Study possible application to entry guidance in
an uncertain atmosphere
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Left: Gain required to maintain steady-state state variance. Right: Steady-
state control variance plotted against steady-state state variance. P, (O) = Pxo, P, (tf) — Pxf
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