

MINIMUM-FUEL POWERED DESCENT IN THE PRESENCE OF RANDOM DISTURBANCES

J.Ridderhof¹ and P. Tsiotras² ¹Graduate Student, ²Deans Professor, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA

Abstract

It has recently been shown that minimum-fuel powered descent guidance can be solved onboard as a convex optimization problem. It therefore presents itself as a promising technology to enable future planetary exploration missions. However, since this approach is formulated as a deterministic optimal control problem, the resulting guidance law is only designed for a single pair of initial and target states without external disturbances.

We attempt to extend this approach to the more

Problem Formulation

We want to design a control pair (\bar{u}, K) to achieve soft landing at final time $t_f > 0$

 $\bar{x}(t_f) = 0, \quad P_x(t_f) = P_{x_f},$

Control is constrained to the set

 $\Omega = \{ z \in R^3 : \rho_1 \le ||z|| \le \rho_2 \}$

Enforce constraint in probability (Gaussian dist.) $\Pr[u \in \Omega] = \int_{\Omega} f(z, \bar{u}, P_u) dz \ge 1 - \beta$ Minimize mean fuel cost

Simulation Results

MSL divert scenario: 1,500 m altitude, 125 m/s velocity at flight path angle -36.9 deg. Command divert to site 2,000 m behind vehicle in plane of velocity vector.

```
P_{x_0} = \text{diag}(200, 200, 200, 10, 10, 10)
P_{x_f} = \text{diag}(10, 10, 10, 1, 1, 1)
```

Enforce that control is in bounds with probability 99.9%. Settings summarized below:

Property	Value	Unit
Wet mass m_0	$1,\!905$	kg
Propellant mass	400	kg
lpha	4.4865 e-04	$\rm kg/N sec$
P_{x_0}	${ m diag}(200,200,200,10,10,10)$	$m^2/s^2, m^2$
P_{x_f}	${ m diag}(10,10,10,1,1,1)$	$\mathrm{m}^2/\mathrm{s}^2,\mathrm{m}^2$
\bar{r}_0	(1500, 0, 2000)	m
$\dot{\bar{r}}_0$	(-75, 0, 100)	m/s

general case of steering initial position and velocity distributions to target distributions, while considering Brownian motion process noise acting on the system.

System Model

Powered descent with random external force

 $d\dot{r} = (u/m + g)dt + (\gamma/m)dw$

Assume control structure

 $u = \bar{u} + K\tilde{x}$ $\mathbf{E} \|u\| = \mathbf{E} \|\bar{u} + \tilde{u}\| \approx \|\bar{u}\|$

Mass change is given by

 $\dot{m} = -\alpha \|\bar{u}\|$

The mean trajectory therefore satisfies

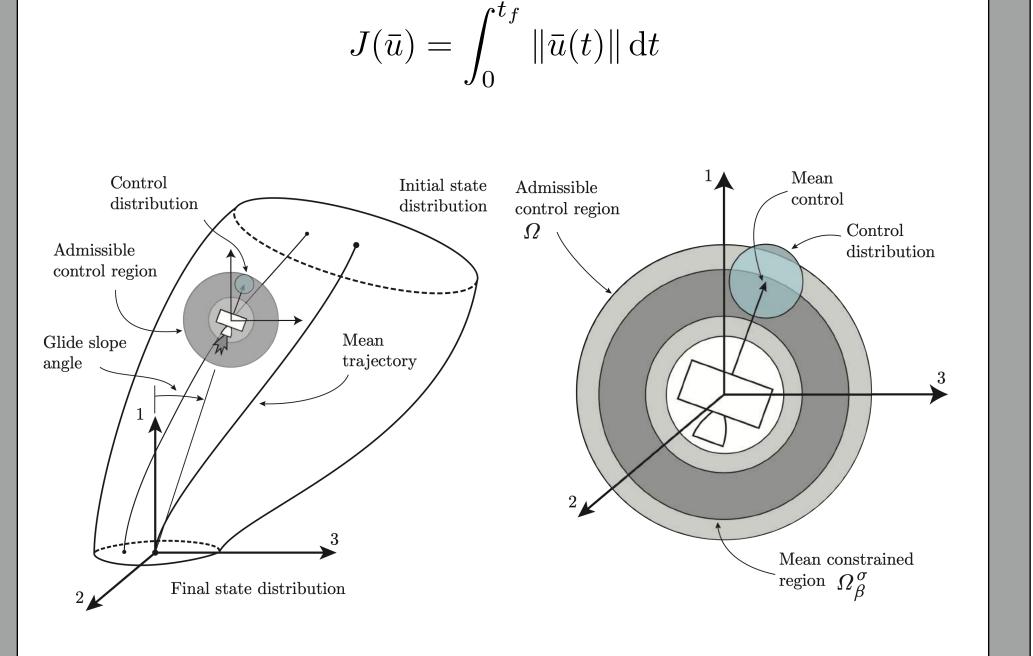
 $\ddot{\bar{r}} = \bar{u}/m + g$

The disturbance is given by the stochastic system

 $\mathrm{d}\dot{\tilde{r}} = (\tilde{u}/m)\mathrm{d}t + (\gamma/m)\mathrm{d}w$

with state covariance subject to

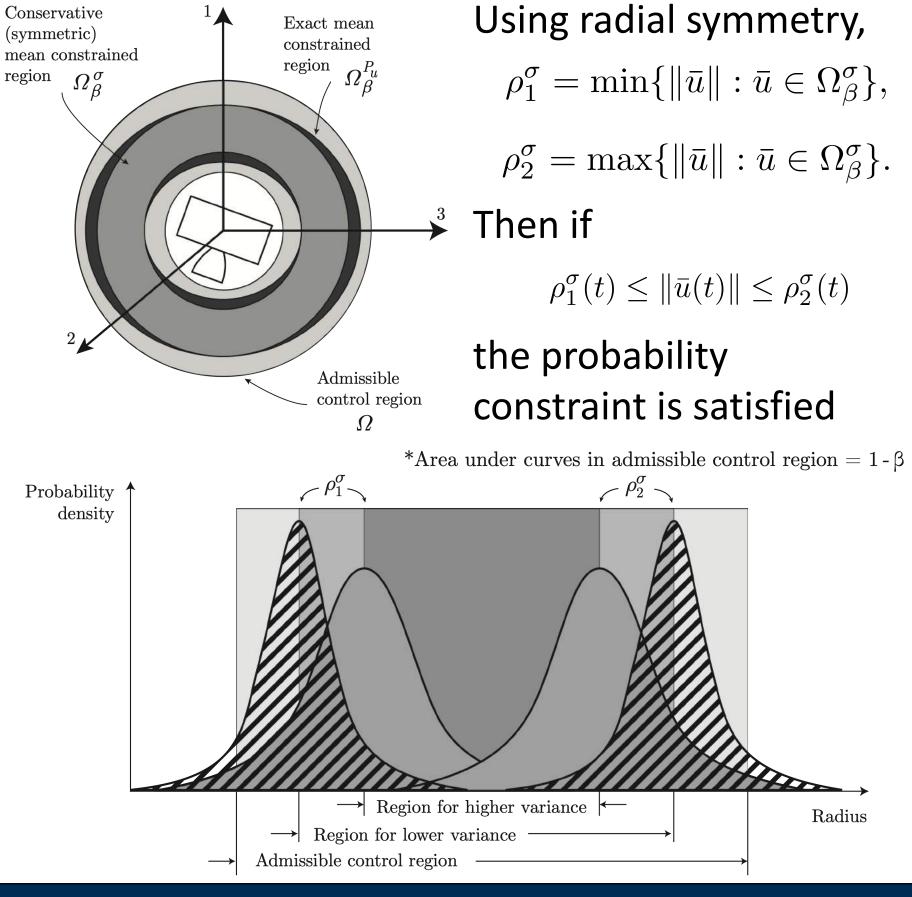
 $\dot{P}_x = (A + B_m K)P_x + P_x(A + B_m K)^{\mathsf{T}} + \gamma^2 B_m B_m^{\mathsf{T}}$

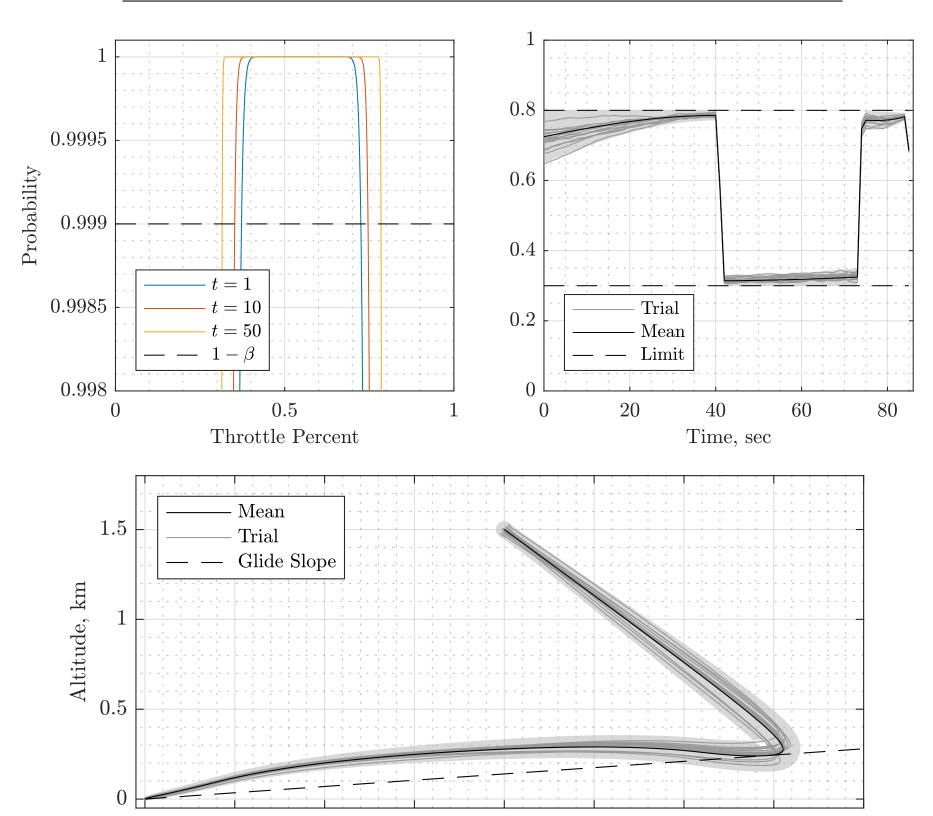


Thrust Constraint in Probability

Probability constraint is equiv. to constraining the mean control vector to the set $\Omega_{\beta}^{P_u} = \{ \bar{u} \in \Omega : \int_{\Omega} f(z, \bar{u}, P_u) \mathrm{d}z \ge 1 - \beta \}.$

Relax with max singular value $\sigma_u^2 = \sigma_{\max}^2(P_u)$



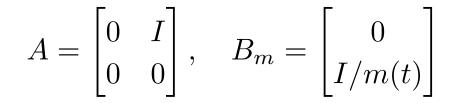


Downrange, km

2.5

3.5

Left: probability that u is in Ω is plotted against the mean throttle percent at different times in the simulation. The values of ρ_1^{σ} and ρ_2^{σ} are determined by the left and right intersections of the probability curve with the dashed line for $1 - \beta$ where $\beta = 0.001$. Right: mean throttle percent and throttle histories from select Monte Carlo trials. The shaded region contains 99.9% of throttle histories. Bottom: Monte Carlo trials with 99.9% of trajectories in the shaded region.



and control covariance

 $P_u = \mathbf{E}[\tilde{u}\tilde{u}^{\mathsf{T}}] = KP_x K^{\mathsf{T}}$

In summary, by assuming mean control is much larger than feedback component we separate mean and disturbance into separate but interdependent systems.

Closed-Loop Control Variance

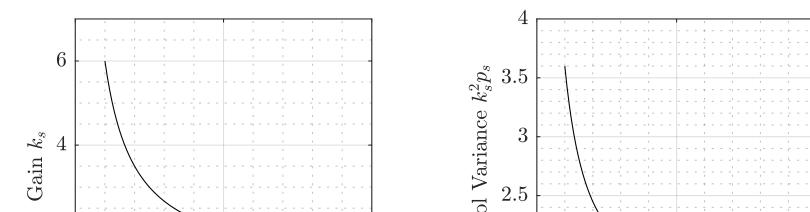
Consider the scalar stochastic system

 $dx = (a - bk)xdt + dw, \qquad \dot{p} = 2(a - bk)p + 1$

As gain increases to infinity, decrease variance to zero. The control is also a random variable

u = -kx

But we can minimize control variance k^2p



Mean and Covariance Steering

- We separated the mean and disturbance into two interdependent systems
 - Covariance depends on mass
 - Mean thrust bound depends on closed-loop control covariance
- Solve mean steering as a convex program
- For given mass profile, there is a closed form solution to covariance steering problem:

Conclusions / Future Work

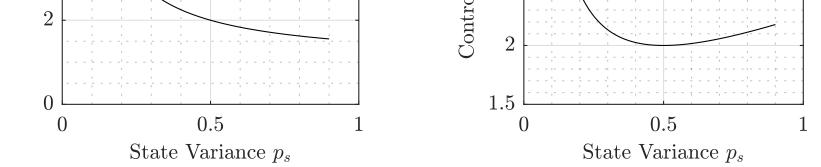
Conclusions

- Presented a stochastic extension to optimal \bullet powered descent that guarantees throttle constraints in probability
- Constraints on feedback control introduced a coupling between trajectory and control
- This work constrained that the control would not saturate, but a better constraint would be on the final state covariance (allowing saturation)

Future Work

- May be possible to generalize theory to any minimum-fuel optimal control problem where there is feedback
- Handle parametric uncertainty
- Study possible application to entry guidance in an uncertain atmosphere

References



Left: Gain required to maintain steady-state state variance. Right: Steadystate control variance plotted against steady-state state variance.

 $\int \operatorname{tr} Q_u P_u + \operatorname{tr} Q_x P_x \, \mathrm{d}t$ \min_{K} s.t. $\dot{P}_x = (A + B_m K)P_x + P_x(A + B_m K)^{\mathsf{T}} + \gamma^2 B_m B_m^{\mathsf{T}}$ $P_u = K P_x K^{\mathsf{T}}$ $P_x(0) = P_{x_0}, \quad P_x(t_f) = P_{x_f}$

[1] Y. Chen, T. T. Georgiou, and M. Pavon (2016) IEEE Trans. on Automatic Control 61, 1158–1169. [2] J. Ridderhof and P. Tsiotras (2018) AIAA SciTech Forum.

This work is supported by a NASA Space Technology **Research Fellowship.**