600073 news 1513653445 1513653921 <![CDATA[A big leap in DNA nanotech]]> DNA is increasingly being used as a building material to construct tiny, but sophisticated structures such as autonomous ‘DNA walkers’ that can move along a microparticle surface, fluorescent labels for diagnostic applications, ‘DNA boxes’ that serve as smart drug-delivery vehicles, or programmable factories for nanoparticles for new optical and electronic applications.

To accommodate these functions, researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and around the world have developed ways that allow DNA strands to self-assemble into increasingly complex 3D structures. Yonggang Ke, now an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, was part of that pioneering team of researchers at Harvard as a postdoctoral fellow.

And most recently Ke, who also is a researcher in the Petit Institute for Bioengineering and Bioscience at Georgia Tech, was corresponding author on a collaborative study with Harvard that leapfrogs the technology by two orders of magnitude, enabling next-generation DNA bricks to self-assemble into 3D nanostructures that are 100 times more complex than those created with existing methods. The research is published in Nature.

Click here to read the story and see the video from the Wyss Institute. Click here to read the research in Nature.

 

 

]]> 2017-12-18T00:00:00-05:00 DNA bricks enable self-assembly of 3D nanostructures from 10,000 unique components ]]> 600072 image <![CDATA[Yonggang Ke]]> 228770 image/jpeg Jerry Grillo
Communications Officer II
Parker H. Petit Institute for
Bioengineering and Bioscience

]]>
1292 1292 126571