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Definitions

- Industrial (and Systems) Engineering is concerned
with the design, improvement, and implementation
of systems of people, materials, information, £
equipment, and/or energy ‘

» Manufacturing systems

= Military

= Airlines and road transportation
= Healthcare T

« Public Health can be defined as the “science and art

of preventing disease, prolonging life, and
promoting health” within and across populations

Material adapted from CDC, Wikipedia, Dictionary.com, Institute of Industrial Engineer
websites, or others
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What Tools?

- IE and related field of Operations Research (OR)
draw upon methods from the mathematical,
physical, and social sciences together with systems
approaches to
the results obtained from systems

= Optimization with mathematical modeling

= Simulation of systems with uncertainty

= Statistics and probability

= Economics and financial analysis

« Human factors
— =
QG\ ——
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What Problems in Health?

« Decisions where there are O\O

= Limited resources, or
o Trade-offs between two elements

(e.g., cost and quality-adjusted life years) or & =
s Uncertainties in the system or =
= Complex interactions =

- There may be one or more goals or objectives, and
multiple constraints in the system
 Systems could take different forms
- lI)n%liv)idual (e.g., optimizing radiation treatment within
ody
= Provider (e.g., serving patients in hospitals)

= Network (e.g., distributing emergency supplies within a
state)
= Population (e.g., policies around infectious diseases)
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Some Relevant CDC CIOs

« Center for Global Health
« Office of Infectious Diseases

- Office of Noncommunicable Diseases, Injury and
Environmental Health; including
= Birth Defects and Developmental Disabilities
= Chronic Disease Prevention and Health Promotion W{”‘V
- Office of Public Health Preparedness and Response 011
- Office of Surveillance, Epidemiology, and -
Laboratory Services
- Office of Minority Health and Health Equity




Example Performance Measures

- Efficiency
> Accomplishment of an outcome with the minimum time, effort,

or resources needed
= “Are we doing things the right way?” CQ St
» Example: are we delivering medicines without unnecessary
resources?

- Effectiveness
> Producing the best or desired outcome QthQmeS

= “Are we doing the right things?”

: Exarriplgz a%"e we delivering the right medicines for the right.
population:

. Equity Fair
> Achieving outcomes that are fair or equitable across a system
= “Are we impacting all people or places?”
» Example: is our distribution of medicines equitable?

- Achieving all measures may be desirable, but may not always
be possible
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Examples of |[E Health Research

- Population screening policies for diseases
» Hepatitis C policies for who and how often
- Interventions for diseases spreading across a network
» HiN1a pandemic using agent-based modeling
= Post-campaign evaluation of distribution system
- Quantifying and explaining access to care and disparities
= Pediatric patients across a network
- Predicting disease prevalence in small areas
= Childhood obesity

- Work covers multiple collaborations between GT ISyE,
CDC, and other health entities, including many
researchers not present today



Population Screening Policies

Given a communicable disease, how often should screening of a particular
population be performed given their risk characteristics?



Hepatitis C Screening

Blood-borne Hepatitis C virus (HCV) can cause

end-stage liver disease

Most infected people asymptomatic for decades

- 3.9 million infected people in US but 48% are
unaware

Treatments are somewhat etfective (54%)

progression and

Behavior is important to
secondary infections in t

Sources of HCV Infection (CDC)
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Objectives

. Analyze general models for timing and
frequency of testing decisions
. Disease may be asymptomatic

. Knowledge can affect behavior (progression or
infection)

. Determine appropriate testing and treatment for

Hepatitis C with societal perspective

. Maximize Quality-Adjusted Life Years (QALYSs)
gained, or

.- Minimize cost to the system, or

. Consider both

Kirkizlar, E., D. Faissol, P. Griffin, and J. Swann (2010). “Timing of Testing and Treatment
for Asymptomatic Diseases.” Mathematical Biosciences 226:28-37.
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Natural History of Disease

______________________________________________

: Infected w/out Compénsated Decompensated
—> : : — >
SN11E6 15 Cirrhosis Cirrhosis Cirrhosis

Hepatocellular Liver Transplant
carcinoma (1st year)

N Liver Transplanted
:@: o (after 1st year)
- We use a Markov decision process for testing and treatment

. Model adds that patient’s knowledge of disease can slow progression

- Analysis to find “optimal” timing of policies with extensive
simulations of other testing policies
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Parameter Estimation

Progression rates of disease Bennett et al ﬁlQQ?);)D&%os et al (2000);

[including w/ or w/out alcohol] [Freeman Iggsngzrgoelt . (2|8 16)5 al (2001);
QALYs Singer (2001); Chong (2003)
Cost of disease Sullivan et al (2004)
Treatment success rates Manns et al (2001); Horoldt et al (2006)
Incidence Rates CDC (2006)
Drop-out & Ineligibility Rates Fried et al (2002); Jowett (2001)

Genotype factors Hornberger (2006)
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Maximizing the Utility (1 Test)

Additional Discounted Utility

Overall Population

—=— Test + Treat

Testing IDU population has high
utility for a wide range of ages
Should we test more often?

Age of Test

Testing in middle years captures
more infections than early years,
and still captures most of the

benefit of catching disease early

Additional Discounted Utility
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Cost/Utility Ratio for Multiple Tests

A0 Stests
4 tests
3 tests
2 tests
* 1 test
— 50K/QALY line
T TT @ 32
TT@26 41
TT@ 23 33 47
TT@21 29 37 49
TT@19 25 31 39 49
TT @25
TT @23 30
TT @21 27 33
TT @13 15 51 53 57

900

O %

800 -

700

[o)]

(]

(]
T

X % % %

Multiple tests of IDU population
where all age combinations are
shown for each n-test policy.

Additional Discounted Cost

o 5K Yellow shows policies with
e o s o2 s highest QALYs for each n-test;
Additional discounted QALYS .
Red marks frontier

Most policies are cost-effective
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Conclusions

. Testing Recommendations

- High-risk groups should be tested (multiple times) over
a wide range of ages

- Testing is also at the edge of cost-effectiveness for the
general population

. Static interval testing is appropriate for some groups, but
dynamic testing can offer improvement

. Similar approaches can be used for a wide variety of
diseases

- Screening of newborn infants (Ayer & Keskinocak,
Grosse et al)

- Various cancers (Ayer)
- Personalized medicine based on risk factors



Interventions for Epidemics

How might a disease spread over time and space? What are the

impacts to changes in the system? How should one design a
response system?
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Background on Epidemic Work
» Goal

= Use simulation and modeling to promote better decision
making 1
» Policies 21
» Planning
- Response

= Variety of organizational types
- Government
- Non-governmental 0

. 6/29 727 824 921 1019 1116 1214 111 218 a8 4/5

* Private Industry 1018 1010

- Initial modeling performed prior to outbreak of HiN1a in
2009, with evaluation of US vaccine distribution
afterwards

- Still relevant, as epidemics still possible (H7N9 or others)

1918 flu
pandemic

20 +

15 +

10 +

8 +

Deaths per 1,000 persons

Source: J. K. Taubenberger, D. M. Morens. 1918 Influenza: the Mother of All Pandemics. Emerging Infectious Diseases (2006)
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Approach

- Modeling and understanding the disease spread geographically
and over time
= Impact of seasonality and mutation
 Constructing a food distribution network for planning and
response
> Estimating the food need
= Number of facilities and their locations (over time)
> Allocation of resources among the facilities
- Analyzing the impact of intervention strategies (i.e., policies)
- Using framework to study other decisions

’ COllaborationS [ + American Red Cross
» Food planning in collaboration with wapottan Atéina Chapier

» H1N1 policy updates to GA Department of Education, and GA-
DHR Department of Public Health

s On loan to CDC during the 2009-2010 H1N1 pandemic


http://www.atlantaredcross.org/site/c.gjJXJfMQIqE/b.503889/k.CCA6/Home.htm
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Disease Progression Model

- An individual-based stochastic model (expansion of SEIR)
- 5age groups (0-5, 6-11, 12-18, 19-64, 65+)

IA Parameters for pre-H1N1 planning
p P4 = 0.4 for adults (19-64) and 0.25 for
2 others (:2:3:4)
Py = 0.18 for children between o0 and 5, 0.12
S —> E —> P R {10213 elderly (65+) and 0.06 for others
1- 1-p Al—p DPp = 0.344 for elderly and children between
S: Susceptible Pa D 0 and 5 and 0.172 for others (4:6)
: ) ) Duration of E + I, ~ Weibull(1.48, 0.47)
E: Exposed . IS Pu IH Pp D (including an offset of 0.5 days) -5
Ip: Presymptomatic Duration of I, = 0.5 days (5
I,: Asymptomatic Duration of I ~ Exponential(2.7313) @
I;: Symptomatic Duration of I, ~ Exponential(1.63878) )
R: Recovered Duration of I;; ~ Exponential(14) @5
I,;: Hospitalized
D: Dead

Wu, J. T., S. Riley, C. Fraser, G. M. Leung. 2006. Reducing the impact of the next influenza pandemic using household-based public health interventions. PLoS Medicine 3(9) 1532-1540

2l ongini, I. M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. A. T. Cummings, M. E. Halloran. 2005. Containing pandemic influenza at the source. Science 309 1083-1087

3Germann, T. C., K. Kadau, I. M. Longini, C. A. Macken. 2006. Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. 103(15) 5935-5940

4Ferguson, N. M., S. Mallett, H. Jackson, N. Roberts, P. Ward. 2003b. A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during
community-based use of antivirals. Journal of Antimicrobial Chemotherapy 51 977-990

SFerguson, N. M., D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. lamsirithaworn, D. S. Burke. 2005. Strategies for containing an emerging influenza pandemic in
Southeast Asia. Nature 437 209-214

6Carrat, F., J. Luong, H. Lao, A. Sall, C. Lajaunie, H. Wackernagel. 2006. A “small-world-like” model for comparing interventions aimed at preventing and controlling influenza pandemics.
BMC Medicine 4(26)
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Disease Contact Network

Households

Peer groups (work place and schools)

Community: Census tract-based

= Population ~ (1500-8000)

Agent-based Simulation built for state of Georgia

»  Household statistics, work flow data, classroom sizes, age statistics

Community 1
Household 1

Householc

———— School

Household 4

ousehold 3

Community 2

Flexible model that can be adapted to other states or the entire U.S.



RN,

Basic Simulation Estimates for Georgia
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Ry Value Peak Infectivity Peak Day CAR [AR Death Ratio

L5 248% 70 32.50% 49.65% 0.57%
1.8 5.27% 50 44.20% 67.49% 0.80%
2.1 8.01% 40 51.21% TR.2T% 0.93%

1Ferguson, N. M., D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke. 2006. Strategies for mitigating an influenza pandemic. Nature 442
448-452.

2Rvachev, L., I. M. Longini. 1985. A mathematical model for the global spread of influenza. Mathematical Biosciences 75 3-22.

SMills, C. E., J. M. Robins, M. Lipsitch. 2004. Transmissibility of 1918 pandemic influenza. Nature 432 904-906.



Example Spread across GA
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Estimating the food need (Metro Atlanta)

- 3 meals per day

« Several alternatives to calculate the food need

= Serve the households with

+ An infected (symptomatic or hospitalized) individual

« All, or only those below 25K income, or below the poverty level
- All adults infected (symptomatic or hospitalized)

« All, or only those below 25K income, or below the poverty level

> Serve the quarantined households
= Need varies over these scenarios from 250K to 35 Million

- Model captures need across time and space

- Engineering models can help design the distribution
system needed
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Food Distribution Network

Facilities Week t <— Time - > Week t+1
(some open)

Different

Capacitated Multi-Period Hierarchical Facility Location Problem
Demand (D): households with needs
Points of distribution (POD): e.g., located at schools
Major Facilities (MF): warehousing, storage, cross-docking
Supply nodes (S): Source of food

Locations are open (shaded) or closed (white) as needed over time



Performed optimization of network

s Meet the maximum demand given a limited budget,
or minimize cost to serve a particular sized population

 Solved small instances (to study solutions) and large
instances (for 1600+ census tracts in metro-Atlanta)

s The number of major facilities is the most important factor in
making the problem hard to solve

- For large problems, heuristics outperform best integer
solution found within time limits

- “Static” approach is usually sufficient, but dynamic can be
worthwhile if disease estimates are changing

- Results indicate where might be good locations for facilities

Ekici, A., P. Keskinocak, and J. Swann. “Pandemic Influenza Response: Food Distribution
Logistics.” Forthcoming at Manufacturing and Service Operations Management.



R —— )
Further Analysis of Spread

- Impact of household quarantine (weeks 4 — 12) on food need

1,000,000 IMPLICATIONS :
900,000 Y —
) E— A Total demand 4 26.70%
7 N Average demand | 55%
s -/ e Number of open PODs ¥ 50% (stay open
222;222 ST for longer)
| ° 5 ' 6 ' 7 ' 8 ' 9 ' 10 ' 11 ' 12 ' 13 ' 14 ' 15 ' 16 ' 17 ' 18 Capacity bottlenecks i

- Seasonality and mutations can cause second or third waves
- Traveling (e.g., over holidays) can also cause wavelets

s

o >x 10~
|

8 (\/ﬂ\j “V\ -
= f{ W A«‘\‘M‘/ b Can mimic 1918 patterns
= 6 § AN .
= f w M (i « Ro*=15
& s N | W | i ) .
= ° | r N, « Start in April
£ ar J Y »d " ! .
= .l { L / “. |+ Mutant strain emerges at day 275 (Dec)
= [ \, f;‘” YW |« &=0.3 (start of seasonality)

/ Y, W, _ .
1| A ’WWMWWW/ N e W« §=0.015 (related to mutation rate)
o b i i v i
o 100 200 300 400 500

Time (Pandemic Start from April)

Shi, P., P. Keskinocak, J. Swann, and B. Lee (2010). “Modeling Seasonality and Viral Mutation to Predict the Course of an
Influenza Pandemic.” Epidemiology and Infection Oct;138(10):1472-81.

Shi, P., P. Keskinocak, J. Swann, and B. Lee (2010). “The Impact of Mixing Pattern Changes from Holidays and Traveling on
Outcomes during an Influenza Pandemic.” BMC Public Health 10:778.
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Engineering and Epidemics

- Models can test out different strategies

o 'What is the value of information (surveillance or vaccine
administration) on adapting distribution dynamically?

- What models or logistics are needed for other types
of diseases?
= Cholera study with Task Force for Global Health
= (Dr. Pinar Keskinocak & Dr. Dima Nazzal, GT HHL Center)
- What can results from 2009-2010 distribution tell
us for the future?

= States differed widely in their vaccination uptake and their
distribution systems. Is there a link?
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H1N1 Influenza Pandemic

- A national influenza HiN1 vaccination campaign for the
H1N1a pandemic began in Fall 2009 and involved
federal government working with states and local health
departments (HDs), providers, etc.

- Initial allocations to states were pro-rata
by population but vaccination coverage rates varied
greatly across states
o Adults: 8.7to0 34.4%
= Children: 21.3% to 84.7%

» High-risk adults: 10.4% to 47.2%

Vaccine o
Manufa L
cturers Centers » Providers

(Public,

private,
schools,

Example Vaccine Supply Chain special;sts,
€etc.
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Objectives

- Find system factors and state decisions that
explain variation in coverage rates
= Supply chain design and processes
= Population and state characteristics
= Health infrastructure or behaviors

« Note that

= Vaccine was in short supply in the first part of the
response

s Priority groups (or subgroups) were targeted

= States and/or local HDs had different processes
and strategies

1. Davila Payan, C., J. Swann and P. Wortley (2012), “Supply Chain and System Factors to Explain H1N1 State Vaccination
Rates for Adults in US Emergency Response to Pandemic”. Forthcoming at Vaccine. (Accepted April 2013).

2. Davila Payan, C., P. Wortley, and J. Swann (2012), “System Factors to Explain H1N1 State Vaccination Rates for Children
and High-Risk Adults in US Emergency Response to Pandemic”. Cleared by CDC June 2013. Working paper, Georgia Tech.



o
Approach

- Regression over state vaccination rates for
adults, children, and high-risk adults

= Studied supply chain factors, while controlling for
others

= Limitations of ecological model and the data
= Adjusted R-squared values 75% or greater

Standardized coefficients when predicting adult coverage

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.66E-16 0.06807 3.9E-15 1.00E+00

c/ % Hispanic 0.378 0.07953 4.753 2.26E-Q5[***
sf2 Past Flu Coverage 0.3599 0.07928 4.54 0.000045(***
ah36 % Women w/ Pap 0.3002 0.07653 3.923 0.00031[***
sh2 Max # Sites 0.1807 0.07061 2.558 0.01412/*
sh11 % to Specialists -0.295 0.07788 -3.788 0.000468***
pw3 % weeks ILI high -0.4366 0.07362 -5.931 4.61E-07|***

o7 Leadtime -0.4419 0.07401 -5.97 4.04E-07|***

Signif. codes: 0 “*** 0.001 “**" 0.01‘*’0.050.1°"1
Adjusted R-squared: 0.7637, Reg p-value: 6.035e-13
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Overall Findings

Strengthening existing seasonal flu vaccination programs, provider
infrastructure, and usage of preventive medical programs could be beneficial
for emergency response or campaigns with limited supply

Increase the number of ship-to-sites allowed or underlying provider
infrastructure

= Variable associated with higher vaccination coverage in all groups

Consider pro-rata allocation that includes children if they are a priority

Further explore leadtime and order lags

= E.g., positively correlated with use of third party for redistribution
and negatively with shipments per location

= Ordering and shipping lags may be a function of system design, or

efficiency, suggesting monitoring and/or system design changes
Sending vaccine where there is general access rather than
limited access can be beneficial

= Appears in adult model (“limited access” effect) and high-risk adult models (“general
access” effect)




Access to Care ana Disparities

What approaches should be used for quantifying access or
disparities over a network? What interventions could result in
the most improvements?
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Access to Pediatric Healthcare

- There is a large and increasing discrepancy between the rural and
urban supply of pediatricians (Randolph, Pathman 1996)

In 1996, 95.5% of counties with populations below 10,000 had no pediatrician and
84.4% of counties with populations below 25,000 had no pediatrician

Only 8% of general pediatricians and only 4% of pediatric sub-specialists practice in
rural areas, where approximately 20% of children live.

- The U.S. Department of Health and Human Services identifies
increasing accessibility of healthcare services as a key step in
mitigating the widening disparities of health outcomes of children
(Healthy People 2010)

- Inequities in access to healthcare are also associated with higher costs
and inconsistency in health treatments (Williams, R.A. 2007)
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Pediatricians Per Child in Georgia

e Many counties have no pediatricians ¢ Specialists are even sparser
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What role does spatial access play in health outcomes?

Data on location of pediatricians is from the 2010 National Provider Identifier (NPI) Registry through
the Center for Medicare & Medicaid Services (CMS). Data on population from 2000 Census.
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Engineering® and Access

Link to
‘ Outcomes
Design
Interventions
‘Infer
Outcomes
ar}d o  Measurement
Disparities Concerned with evaluating geographical access of
.Measure different populations by taking into account supply
Status Quo and demand trade-offs and system constraints.

- Inference: Equity
A study of systematic disparities in access to services

between population groups defined by geographic
location and demographic characteristics.

- Designing Interventions

Optimization allows one to target interventions or
estimate the impact on a complex system

« Qutcomes

. o Ultimately we want to design interventions likely to
*Also includes Statistics positively impact health outcomes or inequities
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Our Approach

« We use optimization to match supply and demand and
quantify access for multiple populations across the
network

= System constraints
 Mobility — transportation, cost, infrastructure
» Capacity — access to supply, system dynamics
» User choice within network and willingness to travel

= System can be measured on distance traveled, congestion
or scarcity, coverage, or others
« Our premise: Equity is achieved when there is no
systematic association between “potential access” and
socioeconomic or other attributes of a population
= Use spatial statistics for associations and significance



|
Optimization Model

n m _ Decision Variable:
Objective: min sztj* ( ng ;M + n;9)

e Number of children in each census tract

==t assigned to each physician (separately for
Constraints: Medicaid and other populations)
, iz (ne™4nu®) - R Objective function:
e = e o »  Minimize travel distance for covered patients
. ~ M O . .
2. % ng™M 4+ ny; P <PC Wj Constraints:
t: 1) Coverage:
3. % ny;M<PC * pam; Vj o Achieve a minimum coverage level at the state
i— level
2-3) Physician Capacity:
M w7730 A Y- .. .. .
4. an-_,- I(ds; = 10} = mi™ +p; ¥i For each physician, limit assignees by the
i=1 maximum patient caseload & the estimated
e number of Medicaid patients they accept
5. % ng9* I(dy; = 10) < mP+p; Vi 4-5) Patient Mobility:
j=1

e For each census tract, limit the assignees to

6. M 4 n2)< AC * mdy Yk physicians more than 10 miles away by the
> ta = e percentage of the population with cars

el el . . .
. 6) Dispersion of Congestion:
7. > ni™M< p* pom; Vi «  For each county, ensure that avera%e congestion
j=1 for physicians is below a threshold level
m 7-9) Logic of Assignments:
O = & - - ] . . .
8. > ni9< pi* (1- pom;) Vi e Assignments less than number of children in
=1

population
9. n;;M=0, n;;%¥= 0 Vi, ¥j * No negative assignments



Distance Congestion Intervention

Overall Travel Cost Overall Congestion

= Owaerall Population
=—— Medicaid Population
—— Non-Medicaid Population

33

Latitude

33
MAwerage Distance

Latitude

32
32

31

31

0.0 0.2 0.4 0.8 08 1.0

 Urban areas: shorter  Congestion high across Increasil}g partic.ipa}tion of
distances and higher state except for some MDs tgkmg Medicaid
coverage than rural cities would improve access for

Medicaid patients without
compromising access for
overall population

* Wide variety in
distances traveled

* Nobles, M., N. Serban, and J. Swann (2012), “Spatial Accessibility of Pediatric Primary Healthcare: Measurement and
Inference”. Under review at Technometrics. Submitted January 2013.
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Example Independent Variables
for Spatial Regression on Distance

% With Some Higher Education

Segregation Ratio

34

33
1

34
1

Lattuae

% Nonwhite

32
1

33
1

Lautuae

31
32
L

T T T T
-85 -84 -83 -82 -81

[
SR
5%
| L

Longitude _ g
(o] =}
* High primarily in cities 3 b 5

Longitude

* Ratio > 1if small
surrounding area has less
segregation than larger
surrounding area

» Tends to be largest in
small towns

T T =T = T
-85 -84 -83 -82 -81
Longitude

* High in cities and in diagonal
band across state
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Associations with Accessibility

- Regression with spatially varying coefficients allowed controls for spatial dependence

« Model selection:
= Estimate many combination sets of predictors
= Evaluate model performance based on multiple statistical criteria

- Findings:

= There is unexplained systematic access disparities

= Factors tend to have a consistent effect on access

- Distance tends to be higher with (higher income, lower education, more segregation
compared to community), and nonlinear with population density

Percent with Percent of Distance to
Higher Unemployme| non-white Population Nearest Diversity
Income Education nt Rate children Density Hospitals Ratio
Consistent Effect Yes Yes Yes Yes Yes No Yes
Significant Effect Yes Yes No No Yes Yes Yes
Non Linear or

Type of Effect Constant Constant Constant Constant Non Linear Constant Constant
Range of
Coefficients [.2,.35] [-.26, -.15] [.001, .41] [-.18, .06] — [.11, .13] [-.24, -.18]
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Access for Other Health Services

« Methods, with application to Asthma and

Cystic Fibrosis!
.. . "'l-'rq"u:,‘:l,"ujg INENENASN
= Compares optimization models to other "l-fg‘,{:?,g}{;g*‘éz‘%xm i".i:}': "7
. . Y, [2 LZA Y\ rv \WAVA «
methods including E2SFCA across dense, i) =g "““'",j“;'“:i-:;irg‘f":r?:; 3
[ | SR ‘ y

sparse, and heterogeneous networks

- HiN1: Quantifying and Explaining Access
to Vaccine during Shortages?
= Uses vaccine shipments, populations, and
modeling

= Finds that population density is associated
with differences in access but that most
socioeconomic characteristics are not

Latitude

-1

Longitude

1. Li, Zihao, N. Serban, and J. Swann (2013), “Methods to quantify spatial access to health services including Asthma
and Cystic Fibrosis”, Working paper at Georgia Institute of Technology.

2.  Heier Stamm, N. Serban, J. Swann, and P. Wortley (2012), “Quantifying and Explaining Accessibility of H1N1
Vaccine during the 2009 pandemic”. Under review at Management Science. (Received CDC clearance 2012;
Submitted Feb 2013.)
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Access to Outcomes to Interventions

Assigned Distance (per County) Summary by State

- Asthma: Linking Access to Outcomes!
= Distances to asthma care vary greatly over a network s

s Tests the association between spatial access to . } -
asthma care and visits to hospital in CA, FL, GA, NC « = median
= Finds that increased distance is often associated N -
with lower outcomes, especially for children age 4-9 o ¥ e
 Designing Interventions for Improved Accessand "¢ g9 99 ¥y Wy XY |
Outcomes MN L CA NG PA S A WY TN AL LA WS AR

= What are the pathways to care (especially for Medicaid patients), and what kind
of interventions would improve outcomes?

=  How effective would it be to use schools, health departments, or retail clinics
for additional services? Where would be most effective, and how many?

1.  Garcia, E, N. Serban, and J. Swann (2013), “Linking Access for Asthma Care to Emergency Department Visits and
Hospitalizations”, Working paper at Georgia Institute of Technology.



Predicting Disease Prevalence

What is the expected level of disease in each small area, so
interventions may be targeted effectively?



A
Pediatric Obesity

- Pediatric obesity has tripled in the last three decades

- The cost of obesity in the United States totaled about
$147 billion in 2008 (Finkelstein, et al 2009)

- Interventions could impact children immediately,
and health system for the long-term

» Obesity differs geographically and/or by population
characteristics

= Targeting the interventions (e.g., by area) may be
more cost-effective

= But, survey and surveillance approaches are costly

0 Statjstical modeling and simulation can be used to
project prevalence in “small areas”
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Data on Pediatric Obesity

- National Health and Nutrition Examination \
Survey (NHANES) contains national survey {
and examination data for all ages!

- National Survey of Children’s Health (NSCH)
provides state-level estimates for ages 10-17
from self-reported surveys?

- Arkansas school systems started collected
measurements, reported for schools or
counties

1. Davila Payan, C., M. DeGuzman, N. Serban, and J. Swann (2012), “Local Estimates of Pediatric Obesity for
Informing Interventions in Georgia”, Working Paper, Georgia Tech.

2. Zhang X, Onufrak S, Holt JB, Croft JB. A Multilevel Approach to Estimating Small Area Childhood Obesity
Prevalence at the Census Block-Group Level. Prev Chronic Dis 2013;10:120252.
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Approach: Multilevel Logistic Regression

 Logistic regression for prediction of individuals 2-17 with BMI measured in
NHANES (2001-2008)
= Predicting overweight or obese, defined by 85% BMI)
« Covariates tested
= Gender
= Age in months
= Race/Ethnicity: Hispanic, Non Hispanic (N.H.) Black, Other N. H.
= Income level at or above 4, 2, 1 times the poverty level
= Educational Level of household reference person

= Household size Coefficient Covariate Mean 95%C.I. p-value  Characteristic
« Selected variables B, X, 020 (0.05,035) 00107  Non Hispanic Black or not
s Individual significance Buho X,  -034 (-0.57,-0.11) 0.0043  Non Hispanic Other or not

o Fit with Census data available Bn X 0.34  (0.18,0.50)  0.0001  Hispanic or not
fOI‘ Smau areas P Xe -0.58 (-0.78,-0.38) 0.0000 Household representative

. e education level

= Wald F statistic of overall B X, 069 (-0.95,-0.43) 0.0000 Household size

model I/ X, 0.76  (0.59,0.93) 0.0000 Age in months

Bo Intercept -0.56 (-0.84,-0.27) 0.0002 Intercept coefficient
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Approach: Simulation across Areas

 Used Census 2000, Summary File 3
= Each variable stratified by race-ethnicity
= Missing data in small areas approximated
- In each census tract, generate 1000 virtual individuals
using proportions from Census
Generate model coefficients from distributions
Project likelihood overweight or obese
Simulate whether individual is overweight or not
Count people overweight or obese in that tract

Repeat 1000 times, and calculate 95% confidence
intervals

- Also convert estimates to zip codes level

]

O O ] a
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Estimates for Overweight children

Prevalence (zip codes)

Priority Areas:
Areas that cover ~ 80%

of the overweight
children in GA

Results used to target interventions by a large
healthcare provider in GA



Validation of results

 Cross-validation of model

» Our overweight baseline estimate for children 10
— 17 years old in the state of Georgia is 37.5%,
comparable with 37.3% (31.7 - 42.9) in 2007
NSCH

- Comparing results in small areas

s GT NHANES model to CDC NSCH model with
geomarkers

s Both to estimates of adult obesity in GA
= Both to school estimates in Arkansas

Research partially funded by seed grant by CDC & Georgia Tech through IPaT



Decision=Support

Modeling can be built into tools, from patients, up to providers,
organizations, and policymakers



Scheduling Catch-up Vaccinations

Recommended Immunization Schedule for Persons Aged 0 Through 6 Years—United States * 2010
For those who fall behind or start late, see the catch-up schedule

Vv - A 1 2 4 6 12 15 18 19-23 2-3 4-6
accine v ge > Birth | month : months : months : months ;| months | months : months : months | years : years
Hepatitis B HepB HepB HepB _
Rotavirus? RV { RV { RvZ Rang of
s e recommended
Diphtheria, Tetanus, Pertussis® DTaP : DTaP : DTaP ; . ..° DTaP DTaP | agesforal
" R it Mt children axcept
Haemophilus influenzae type b* Hib Hib Hib* Hib certain high-risk
Pneumococcal® PCV : PCV : PCV PCV m] —
Inactivated Poliovirus® PV | IPV _ 1PV _ PP -
, ; : ; e Range of
Influenza’ _ Influenza (Yearly) recommended
I e e e o carm
Measles, Mumps, Rubella® MMR see footnote MMR :igg?-ris;?mgs
Varicella® Varicella ses footnote® Varicella
Hepatitis A' HepA (2 doses) HepA Series
Meningococcal™ . i i

- Many children have late, early or missed vaccinations

- Aim: a freely available and easy to use automated tool for
catch-up scheduling using vaccination history and
feasibility rules

- Approach: dynamic programming in Excel or other
platforms

« H. Smalley, F. Engineer, P. Keskinocak, L. Pickering (2010), “Universal Tool for Vaccine Scheduling — Applications for
Children and Adults,” Interfaces., Vol.41, No.5.

* F. Engineer, P. Keskinocak, L. Pickering (2009), "Catch-up Scheduling for Childhood Immunization," Operations
Research, Vol.57, No.6, 1307-1319.



Output Charts -- Childhood Catch-up Scheduler

Scenario 1

A 4 mont
of DT aP ]

Schedule” generated for: on Nov 05, 2010 (11/05/2010)
Birth Date: Jul 04, 2010 (07/04/2010). Current Age: 0 vear's. 4 month's and 0 week's

0-4 1-2 3-5 6-11 | 12-14 | 1517 18-23 4-5

Timeling weeks |months maonths months jmonths |months manths years

&k
Fec. Date 07040 09/02:410 Today 12/03/10 |01/04/11 |07/04/11 [10/04/11 |01/04M12 |06/04/12 OT/0414 |0T/0416 (Tally

[mmiddiy) 11/05/10
Heop oD 23
Rota 03
DTaP oD oD 5/5
tib* oD 414
PCV® oD m
— oD 415
MMR 7 oD oD 2(2
Var oD oD 2/2
— oD oD 22

—Administered Dose — Catch-up Dose  OD - Ontime Dose m— Freemptive Dose




Usage and Dissemination

* The Desktop Childhood Immunization Scheduler was
available at:
http://www.cdc.gov/vaccines/recs/Scheduler/catchup.htm
107,500+ downloads between June 2008 and March 2012

 Adult Immunization Scheduler:
http://www.cdc. gov/vaccmes /schedules/easy-to-read/adult.html
49,800+ downloads since January 2010

« Adolescent Immunization Scheduler:
http://www.cdc.gov/vaccines/schedules/easy-to-read /preteen-
teen.html
30,850+ downloads since March 2011

* Online Childhood Scheduler
125,000+ Visits since January 2012, htips://www.vacscheduler.org/
http://www.cdc.gov/vaccines/ schedules /easy-to-read/child.html

Ty maﬁljin.gtun AP o=t

Entrepreneur

Catch-up immunization software.

“;AHA’

f)nline.sch.eduler keeps track of missed Tool Creates Personalized Catch-up Immunization Schedules For
A New Tool to Manage Your Child's Vaccine Schedule Immunizations Missed Childhood Vaccinations


http://www.cdc.gov/vaccines/recs/Scheduler/catchup.htm
http://www.cdc.gov/vaccines/schedules/easy-to-read/adult.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/adult.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/adult.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/adult.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/adult.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/preteen-teen.html
https://www.vacscheduler.org/
http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html
http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html

Education and Collaborations

- Professional education
= Health and Humanitarian logistics short courses
= Sept 2013 and May 2014
= http://humanitarian.gatech.edu
- Student project teams in classes
= http://www.isye.gatech.edu/seniordesign
= http://humanitarian.gatech.edu
- Graduate student and faculty research



http://www.isye.gatech.edu/seniordesign
http://www.isye.gatech.edu/seniordesign
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Engineering in Public Health for
“Efficient, Effective, and Equitable” Outcomes

- Julie Swann  Other GT ISyE faculty involved
jswann@isye.gatech.edu or in public health
jswann@gatech.edu = Turgay Ayer
http://humanitarian.gatech.edu - Ozlem Ergun
404-385-3054 (office) > Dave Goldsman

» Pinar Keskinocak
. $ . = Kva Lee

= Nicoleta Serban

@ g ?
‘ » (and many others)

i), GEORGIATECH Georgia J“t P A
\‘ ,,-f.‘ Health & Humanitarian Logistics Center Tegch D@WE A | @Georgla Institute
&7 A Unit of the Supply Chain & Logistics Institute 1 st e "\ o Tech [FD@U@D@EV
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