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Ground Collision Avoidance System
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What Happened?
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Default trajectory

GCAS trajectory

Life saved because of software!
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Cyber-Physical Systems 
Are Everywhere!
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Sometimes, CPS have bugs

GaTech - October 2018 5



Sometimes, CPS have bugs
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Disengagement rates
0.16 – 0.78 for 1000 miles 

❑ Toyota recalls of Prius vehicles (> 20M).
❑ Software failures in medical devices (approx. 25%)
❑ Northeast power grid blackouts.

Uber self driving car running red light.
https://www.youtube.com/watch?v=_CdJ4oae8f4
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https://www.youtube.com/watch?v=_CdJ4oae8f4
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What if  software goes
Really Wrong?
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Cyber-Physical Systems 
Are Everywhere!
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My Research Goal

Develop Principles, Algorithms, and Tools 
for Design, Analysis, and Verification of CPS
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Why is CPS Verification Hard?

Physical Plant

Operating System

Controller 
Software

sensingactuation
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Why is CPS Verification Hard?

Physical Plant

Operating System

Controller 
Software

sensingactuation

State of plant 𝑥
evolves as
ሶ𝑥 = 𝑓(𝑥, 𝑢)

𝑥(𝑡)

time
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Why is CPS Verification Hard?

Physical Plant

Operating System

Controller 
Software

sensingactuation

State of plant 𝑥
evolves as
ሶ𝑥 = 𝑓(𝑥, 𝑢)

Code

𝑥(𝑡)

time

main(){

……… 

if (…) then 

…

else …

}
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Controls &(vs?) Computer Science
Old School New School
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Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic
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؟هل يمكنك إثبات ذلك
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Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic
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؟هل يمكنك إثبات ذلك

是的，我可以證明它！
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Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic
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؟هل يمكنك إثبات ذلك

是的，我可以證明它！

Not  an ideal marriage!
But a necessary one.
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Challenges in practice

▪ CPS that keep track of  time: verification problem is PSPACE Complete

▪ CPS that have simple discontinuity: verification problem is Undecidable
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Challenges in practice

▪ CPS that keep track of  time: verification problem is PSPACE Complete

▪ CPS that have simple discontinuity: verification problem is Undecidable

▪ If  the dynamics is given as “nice” differential equation ሶ𝑥 = 𝐴𝑥 the 

solution for ODE is given as 𝑒𝐴𝑡 where 𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴𝑡 2 +⋯.

▪ Scalability – 50 dimensions (before my work).
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Challenges in practice

▪ CPS that keep track of  time: verification problem is PSPACE Complete

▪ CPS that have simple discontinuity: verification problem is Undecidable

▪ If  the dynamics is given as “nice” differential equation ሶ𝑥 = 𝐴𝑥 the 

solution for ODE is given as 𝑒𝐴𝑡 where 𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴𝑡 2 +⋯.

▪ Scalability – 50 dimensions (before my work).

▪ For nonlinear systems? Phew! The closed form solution does not exist!

▪ Scalability is just 7-8 dims (for general cases).
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What Real Systems Look Like?
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▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time 
scales

▪ Uncertainities

▪ Failures
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▪ Distributed

▪ Heterogenuous time 
scales
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Formal Verification of 
industrial CPS?
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What Real Systems Look Like?

GaTech - October 2018

▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time 
scales

▪ Uncertainities

▪ Failures

Formal Verification of 
industrial CPS?

Hallelujah!
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Formal Verification 101

Verification ToolModel

Specification

Counterexample

Certificate
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Formal Verification 101

Model Checking

Counterexample

Certificate

Temporal Logic

State Machine

□𝑏 ⇒ 𝑐 𝑈 ⋄ 𝑑

Used extensively in

hardware, software,

and protocol verification
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Outline

✓ Motivation

▪ Research Overview

▪ Scalable Verification of  Linear
Control Systems

▪ Future Work
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Brief  Summary of  
Past & Ongoing Projects
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C2E2: A Tool For Verifying 
CPS Models with Nonlinear Dynamics

certificate

CPS models, 
requirements

bug trace 

C2E2

D, Mitra, Viswanathan EMSOFT’13
D, Mitra, Viswanathan, Potok, TACAS’15.
Fan, Potok, Mitra, Viswanathan , D CAV’16.

Zhenqi et.al. [CAV’14]
Fan et.al. [EMSOFT’16]
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Safety Verification Problem

▪ Problem statement: Given dynamics ሶ𝑥 = f(𝑥), initial set Θ, unsafe set 
𝑈, and time bound 𝑇, are all trajectories 𝜉(𝑥, 𝑡) starting from Θ, safe?

▪ Tool that is useful: Discrepancy function.

〈𝐾, 𝛾〉 is called an exponential discrepancy function of  the system if  for any 
two states 𝑥1 and 𝑥2 ∈ 𝑋, for any t |𝜉(𝑥1, 𝑡) − 𝜉(𝑥2, 𝑡)| ≤ 𝐾 𝑥1 − 𝑥2 𝑒

𝛾𝑡
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|𝑥1 − 𝑥2|

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

≤ 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

= 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1
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▪ Always performing a sound analysis :
𝒙𝟏(𝒕) − 𝒙𝟐(𝒕) ≤ 𝜷(|𝒙𝟏 − 𝒙𝟐|, 𝒕)

▪ Improving the partitioning improves the approximation

𝜷 𝒙𝟏 − 𝒙𝟐 , 𝒕 → 𝟎 as 𝒙𝟏 − 𝒙𝟐 → 𝟎

Theorem[Relative Completeness]: Given any HA 𝐴, with an initial set 
Θ, and unsafe set 𝑈, if the system is robustly safe (unsafe) then the 
algorithm will terminates and return the correct answer

Theorem[Soundness]: Given any HA 𝐴, with an initial set Θ, and 
unsafe set 𝑈, if the algorithm terminates and returns safe (unsafe) then 
the system is indeed safe (unsafe)

Soundness and 
Relative Completeness Results
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C2E2: A Tool For Verifying 
CPS Models
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Powertrain Control Systems

▪ Fuel control and transmission subsystem

• Software control: increasing complexity (100M LOC)
• Constraints: Emissions, Efficiency, etc.
• Strict performance requirements
• Early bug detection using formal methods
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Powertrain Control Systems

▪ Fuel control and transmission subsystem

• Software control: increasing complexity (100M LOC)
• Constraints: Emissions, Efficiency, etc.
• Strict performance requirements
• Early bug detection using formal methods

▪ Powertrain control benchmarks from Toyota Jin et.al. [HSCC’14]

▪ Complexity “similar” to industrial systems

▪ Benchmark tool/challenge problems for academic research

Challenge Problem: Verifying one of the models in 
the powertrain control benchmark

D, Fan, Mitra, Viswanathan CAV 2015 Fan, D, Mitra, Viswanathan ARCH 2015
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Verifying Powertrain Control System
(Challenges)

Hybrid Systems Model
Polynomial ODE Plant

+
Modes of operation

Property
rise ⇒ □[𝜂,𝜁][0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓]

C2E2
(Hybrid Systems

Verification Tool)

Yes

No
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Verifying Powertrain Control System
(Challenges)

▪ Mix of  discrete and continuous behaviors.

Property
rise ⇒ □[𝜂,𝜁][0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓]

C2E2
(Hybrid Systems

Verification Tool)

Yes

No
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Verifying Powertrain Control System
(Challenges)

▪ Mix of  discrete and continuous behaviors.

▪ Nonlinear Ordinary Diff. Eqns. – scalability problems

Property
rise ⇒ □[𝜂,𝜁][0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓]

C2E2
(Hybrid Systems

Verification Tool)

Yes

No
ሶp = c1 2θ c20p

2 + c21p + c22 − c12 c2 + c3ωp + c4ωp
2 + c5ωp

2

ሶλ = c26(c15 + c16c25Fc + c17c25
2 Fc

2 + c18 ሶmc + c19 ሶmcc25Fc − λ)

ሶpe = c1 2c23θ c20p
2 + c21p + c22 − c2 + c3ωp + c4ωp

2 + c5ωp
2

ሶi = c14(c24λ − c11)

where

Fc =
1

c11
(1 + i + c13(c24λ − c11))(c2 + c3ωp + c4ωp

2 + c5ωp
2)

ሶmc = c12(c2 + c3ωp + c4ωp
2 + c5ωp

2)
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Powertrain Verification Results

Verified many key specification for a given set of  driver behaviors 

Property Mode Sat Sim. Time

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓, 1.2𝜆𝑟𝑒𝑓] all modes Yes 53 11m58s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓, 1.2𝜆𝑟𝑒𝑓] startup Yes 50 10m21s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓, 1.2𝜆𝑟𝑒𝑓] normal Yes 50 10m21s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓
𝑝𝑤𝑟

, 1.2𝜆𝑟𝑒𝑓
𝑝𝑤𝑟

] power Yes 53 11m12s

□ 𝜆 ∈ [0.8𝜆′𝑟𝑒𝑓, 1.2𝜆′𝑟𝑒𝑓] power No 4 0m43s

𝑟𝑖𝑠𝑒 ⇒ □(𝜂,𝜉)𝜆 ∈ [0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓] normal Yes 50 10m15s

(𝑙 = 𝑝𝑤𝑟) ⇒ □(𝜂,𝜉)𝜆 ∈ [0.95 𝜆𝑟𝑒𝑓, 1.05𝜆𝑟𝑒𝑓] power Yes 53 11m35s

(𝑙 = 𝑝𝑤𝑟) ⇒ □(𝜂/2,𝜉)𝜆 ∈ [0.95 𝜆𝑟𝑒𝑓, 1.05𝜆𝑟𝑒𝑓] power No 4 0m45s

Safety properties

Performance 
properties

Won the ‘Best Paper Award’ at ARCH@CPSWeek 2015

GaTech - October 2018 36



Autonomous Vehicle Racing
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Autonomous Vehicles 
Racing Competition

CPSWeek (April 2018) – Placed 2nd.
ESWeek (October 2018)– Placed 5th.



Embedding Trajectories into Lower 
Dimensional Spaces

▪ Trajectories of  CPS are difficult to analyze because of  2 reasons.

1. The state space itself is high-dimensional.
2. Trajectories (functions of time) are infinite–dimensional artifacts.

GaTech - October 2018 38

CPS Model

Test 1 Test 2 Test k…

…

𝝉𝟏
𝝉𝟐

𝝉𝒌

D, Sheehy CCCG’18



Embedding Trajectories into Lower 
Dimensional Spaces

▪ Trajectories of  CPS are difficult to analyze because of  2 reasons.

1. The state space itself is high-dimensional.
2. Trajectories (functions of time) are infinite–dimensional artifacts.

▪ How to reduce dimensionality and think of  trajectories as points.

▪ Properties of  embeddings (Lipschitz).

▪ Efficiency?  
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CPS Model

Test 1 Test 2 Test k…

…

𝝉𝟏
𝝉𝟐

𝝉𝒌

D, Sheehy CCCG’18



Scalable Verification of  
Linear Control Systems

GaTech - October 2018

D, Viswanathan CAV’16

Bak, D CAV’17
Bak, D TACAS’17

Bak, D ARCH@CPSWeek’17
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Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;
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Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;
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Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag
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Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);
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Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

leaderfollower

𝒔𝟏
velocity = 𝑣1;

acceleration = 𝑎1;

Test scenario
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Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;
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Bad scenario?
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Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

leaderfollower

𝒔𝟐
velocity = 𝑣2;

acceleration = 𝑎2;

𝒔𝒎𝒊𝒏

Bad scenario?
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Safety Verification Problem
Given a Linear System ሶ𝑥 = 𝐴𝑥, with initial set Θ and unsafe set 𝑈, are all 
the behaviors starting from Θ for bounded time 𝑇𝑏 are safe? 
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Θ

U

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

ሶ𝑠
ሶ𝑣
ሶ𝑎
=

0 −1 0
0 −𝑘𝑎𝑒𝑟𝑜 1
0 −2 −2

𝑠
𝑣
𝑎

+

𝑣𝑓
0
2𝑣𝑓

≜
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Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.
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𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0
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Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.
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𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models
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𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure
2. Select a time interval ℎ.
3. Compute 𝑃𝑜𝑠𝑡(Θ, ℎ) for [0, ℎ]

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models
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Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.
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𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure
2. Select a time interval ℎ.
3. Compute 𝑃𝑜𝑠𝑡(Θ, ℎ) for [0, ℎ]
4. Iterate for future intervals.

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models
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Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.
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𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure
2. Select a time interval ℎ.
3. Compute 𝑃𝑜𝑠𝑡(Θ, ℎ) for [0, ℎ]
4. Iterate for future intervals.

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models

Drawbacks
1. Representation cost grows with n
2. Cannot be directly applied for 

time varying linear systems
3. When set changes, entire computation

needs to be done
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Background

Setup: 

• Initial set: 𝐻𝑥 ≤ 𝑔 (bounded polyhedron).
• Unsafe set: 𝑄𝑥 ≤ 𝑟 (conjunction of half-spaces).

▪ Initial attempts (2002): Uses vertices of  polyhedral - 𝑂(2𝑛).

▪ Second attempt (2008): Uses support functions - 𝑂(𝑘 × 𝑛2)

▪ [D., Viswanathan] (2015): Uses sparse matrix multiplication. 

GaTech - October 2018 54



Main Insight
Dynamics ሶ𝑥 = 𝐴𝑥 has 

nice properties.

Why not develop 
representations that 

leverage these properties!
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Property: Superposition
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𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

The trajectories form a vector space!
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Property: Superposition
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𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

The trajectories form a vector space!
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Property: Superposition
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𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

𝜉(𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

The trajectories form a vector space!
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Property: Superposition
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𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

.
𝛼1v1

′ + 𝛼2v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′

The trajectories form a vector space!
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Property: Superposition
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𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

.
𝛼1v1

′ + 𝛼2v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

From simulations 𝜉0, 𝜉1, and 𝜉2, 
we can construct any simulation 

starting from a linear span of 
𝑥0, 𝑣1, and 𝑣2.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′

The trajectories form a vector space!
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Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of  vectors, 𝑃 – predicate.
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𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑣1

𝑣2

𝑐1

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐1 + 𝛼1𝑣1 + 𝛼2𝑣2
.
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Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of  vectors, 𝑃 – predicate.
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𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5𝑣1

𝑣2

𝑐1
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Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of  vectors, 𝑃 – predicate.
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𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 − 𝛼2
2𝑣1

𝑣2

𝑐1
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Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of  vectors, 𝑃 – predicate.
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𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝑣1

𝑣2

𝑐1 𝟏. 𝟓 ∗ 𝒔𝒒𝒓𝒕 -𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟏 ∗
𝒂𝒃𝒔 𝟑 – 𝒂𝒃𝒔 𝒙

𝒂𝒃𝒔 𝒙 – 𝟏 ∗ 𝟑 – 𝒂𝒃𝒔 𝒙
∗ 𝟏 +

𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟑

𝒂𝒃𝒔 𝒙 − 𝟑
∗ 𝒔𝒒𝒓𝒕 𝟏 –

𝒙

𝟕

𝟐

+

𝟒.𝟓 + 𝟎. 𝟕𝟓 ∗ 𝒂𝒃𝒔 𝒙 – 𝟎.𝟓 + 𝒂𝒃𝒔 𝒙 + 𝟎. 𝟓 – 𝟐. 𝟕𝟓 ∗ 𝒂𝒃𝒔 𝒙 − 𝟎. 𝟕𝟓 + 𝒂𝒃𝒔 𝒙 + 𝟎. 𝟕𝟓 ∗ 𝟏 +
𝒂𝒃𝒔 𝟏 – 𝒂𝒃𝒔 𝒙

𝟏 – 𝒂𝒃𝒔 𝒙

-𝟑 ∗ 𝒔𝒒𝒓𝒕 𝟏 −
𝒙

𝟕

𝟐

∗ 𝒔𝒒𝒓𝒕
𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟒

𝒂𝒃𝒔 𝒙 − 𝟒
, 𝒂𝒃𝒔

𝒙

𝟐
– 𝟎. 𝟎𝟗𝟏𝟑𝟕𝟐𝟐 ∗ 𝒙𝟐 − 𝟑 + 𝒔𝒒𝒓𝒕 𝟏 – 𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟐 – 𝟏 𝟐 ,

(𝟐. 𝟕𝟏𝟎𝟓𝟐+ 𝟏. 𝟓 – 𝟎. 𝟓 ∗ 𝒂𝒃𝒔(𝒙) – 𝟏. 𝟑𝟓𝟓𝟐𝟔 ∗ 𝒔𝒒𝒓𝒕(𝟒 – (𝒂𝒃𝒔(𝒙) – 𝟏)^𝟐)) ∗ 𝒔𝒒𝒓𝒕(𝒂𝒃𝒔(𝒂𝒃𝒔(𝒙) – 𝟏)/(𝒂𝒃𝒔(𝒙) – 𝟏))
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Technique: Basic Idea

▪ Given initial set Θ = ⟨𝑐, 𝑉, 𝑃⟩, the Reach is computed not as new 
predicate, but is done by changing the center and the basis vectors.
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𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

D, Viswanathan CAV’16

65



Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
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𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1
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Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖
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𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
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Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐
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𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
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Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐
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𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉
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Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐
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𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉
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Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐
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𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉
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Reachable Set Computation Using 
Simulations For Generalized Stars

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐
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𝑐 𝑣1

𝑣2

𝑐′
𝑣1
′

𝑣2
′

𝛼1 ≤ 1 − 𝛼2
2

𝛼1 ≤ 1 − 𝛼2
2

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉
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Demo
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Extensions

▪Accommodate mode switches.

▪Developed new invariant constraint 
propagation technique.

▪Dynamic aggregation and deaggregation
methods.

▪Handle Linear systems with 
inputs/disturbances.
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Experimental Evaluation
HyLAA

Scalability with respect to number of  dimensions.

GaTech - October 2018 http://stanleybak.com/hylaa/ 75
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Running HyLAA on 
High Dimensional Benchmarks

• Motor (11 dims)

• Building (50 dims)

• Partial Differential Equation (86 dims)

• Heat (202 dims)

• International Space Station (274 dims)

• Clamped Beam (350 dims)

• MNA1 (588 dims)

• FOM (1008 dims)

• MNA5 (10923 dims)

GaTech - October 2018

Won the ‘Best Paper Award’ at ARCH@CPSWeek 2017
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HyLAA
Constraint Propagation

GaTech - October 2018 http://stanleybak.com/hylaa/ 77
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HyLAA
Aggregation and Deaggregation

▪ Expensive to not have any 
aggregation.

▪ Completely aggregated 
introduces new transitions 
and doesn’t terminate.

▪ Dynamic deaggregation
has 1.2x – 5x speedup 
based on the system.
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HyLAA
Aggregation and Deaggregation

▪ Automotive drivetrain system with additional masses (8 + 2𝜃).

▪ In lower dimensions, the synchronous behavior of  masses gives a 
better performance for aggregation.

▪ In higher dimensions, the benefits of  aggregation are low because 
deaggregation is performed more often.
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International Space Station Model 
(271 dimensions)

▪ The original safety specification was created using 
simulations. For most models it was safe.

▪ For the International Space Station model, however, it 
was not! This shows that simulation can miss errors. 
The error was not known before analysis with Hylaa.
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Reachability Plot
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Space Station Specification Violation

𝗔 =

𝐴11 𝐴12 ⋯ 𝐴1𝑛
𝐴21 𝐴2𝑛
⋮ ⋮

𝐴𝑛1 𝐴𝑛2 ⋯ 𝐴𝑛𝑛

▪ 2270 × 8(13.71/0.005) = 3 × 102557 cases!

▪ Falsification tool did not succeed after 4 hours.



Counterexample Generation

▪ Control parameter tuning for regulation.

▪ Any execution that crosses the threshold is not useful.

▪ Executions that go “maximum” beyond the threshold are more 
important than others.

▪ Executions that stay longer above threshold are also important.
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Longest and Deepest Counterexamples

▪ Deepest counterexample: execution that ventures into unsafe set 
resulting in a maximum “depth”.

▪ Longest counterexample: execution that stays for longest in 
unsafe set contiguously.

▪ Using constraint propagation, developed a new technique that 
generates these two counterexamples.
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Future Work
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What Real Systems Look Like?

GaTech - October 2018

▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time 
scales

▪ Uncertainities

▪ Failures
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Who Gives The Specification?

▪ For each component?

▪ In a temporal logic?

Absolutely unrealistic!

GaTech - October 2018
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Who Gives The Specification?
▪ For each component?

▪ In a temporal logic?

Absolutely unrealistic!

GaTech - October 2018

Verification without
specification!
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Sometimes, CPS have bugs

GaTech - October 2018

Disengagement rates
0.16 – 0.78 for 1000 miles 

❑ Toyota recalls of Prius vehicles (> 20M).
❑ Software failures in medical devices (approx. 25%)
❑ Northeast power grid blackouts.

Uber self driving car running red light.
https://www.youtube.com/watch?v=_CdJ4oae8f4
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An Enabling Technology
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An Enabling Technology
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How Is This Different From Design 
Verification?

System – I

System – II

Verifier – I

Verifier – II

Proof – I

Proof – II

Counterexample – I 

Counterexample – II 

Layer – I (say control design)

Layer – II (say software implementation)
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How Is This Different From Design 
Verification?

System – I

System – II

Verifier – I

Verifier – II

Proof – I

Proof – II

Counterexample – I 

Counterexample – II 

Layer – I (say control design)

Layer – II (say software implementation)

Do the proofs work together?
GaTech - October 2018 [93]



A Layered Approach For End-To-End 
Verification of  Autonomous Vehicles

+

+

Plant
+

Noisy environment

Software verification of 
embedded code

Scheduling analysis 

Hardware correctness proofs

Sound approx. model

+

Model checking
hybrid systems

+

GaTech - October 2018 [94]

Robust w.r.t. perturbation proof.

Conformance Checking

Scheduler verification

System Identification Analysis



Let’s Hope For a Day Where Autonomous Vehicles and Humans 
Coexist Peacefully
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Thank You

▪ Developed algorithms for verification of  nonlinear systems.

▪ Scalable linear systems verification.

Future work

▪ Verification without specification

▪ Certification of  autonomous vehicles
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Questions?



Backup Slides
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Observations

1. The discrete time reachable set doesn’t change the predicate 
associated with the star. 

GaTech - October 2018

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′ 𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ𝑖 ≜ 〈𝑐′, 𝑉′, 𝑃〉
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Observations

1. The discrete time reachable set doesn’t change the predicate 
associated with the star. 

GaTech - October 2018

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝑐′
𝑣2
′

𝑣1
′ 𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

To compute reachable set of a new initial set, just 
changing the predicate suffices!

Θ𝑖 ≜ 〈𝑐′, 𝑉′, 𝑃〉
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Observations

2.  It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

Notice: all have same center and 
basis in their representation
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Observations

2.  It is easy to aggregate and de-aggregate sets on-the-fly.
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𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝑷𝟏

𝑷𝟐

Notice: all have same center and 
basis in their representation
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Observations

2.  It is easy to aggregate and de-aggregate sets on-the-fly.
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𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

Notice: all have same center and 
basis in their representation
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Observations

2.  It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

Want to deaggregate?

Notice: all have same center and 
basis in their representation
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Observations

2.  It is easy to aggregate and de-aggregate sets on-the-fly.
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𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏
′ = ⟨𝒄′, 𝑽′, 𝑷𝟏⟩

𝚯𝟐
′ = ⟨𝒄′, 𝑽′, 𝑷𝟐⟩

𝑷𝟏

𝑷𝟐
Want to deaggregate?
Just change the predicates!

Notice: all have same center and 
basis in their representation
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Handling Invariants and 
Discrete Transitions
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The Problems With Invariants

▪ Given Θ1, Θ2, … , Θ𝑘 as discrete time reachable sets for a given 
mode, performing just Θ𝑗 ∩ 𝐼𝑛𝑣 only gives an overapproximation.
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Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙)
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Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙) Q) How to compute 𝑨𝒄𝒕𝒖𝒂𝒍𝑹𝒆𝒂𝒄𝒉𝒊+𝟏?
A) Use constraint propagation!
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Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

Θ = ⟨𝑐, 𝑉, 𝑃⟩
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Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩
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Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

Θ = ⟨𝑐, 𝑉, 𝑃⟩

⟨𝒄𝒊, 𝑽𝒊, 𝑸𝒊⟩
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1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

GaTech - October 2018

𝐼𝑛𝑣(𝑙)
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Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩
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Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Θ𝑖 ∩ 𝐼𝑛𝑣 𝑙 Originated from 
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩
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Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of  𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ

4. Propagate constraint 𝑄𝑖 forward --- add it to predicates of  itself  
and all future stars.
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𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1
⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Θ𝑖 ∩ 𝐼𝑛𝑣 𝑙 Originated from 
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩
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Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of  Θ𝑖 as 
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. Add constraint 𝑄𝑖 to the predicate of  Θ𝑖 , Θ𝑖+1, … , Θ𝑘.
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Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.
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Optimizations

1. If  Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If  Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.
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Optimizations

1. If  Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If  Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if  and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)
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Optimizations

1. If  Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If  Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if  and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)

4. [Empirical heuristic]: Compare successive constraints 𝑄𝑖 and 
𝑄𝑖+1 and if  𝑄𝑖+1 is stronger than 𝑄𝑖, replace 𝑄𝑖 with 𝑄𝑖+1.
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Discrete Transitions

▪ Discrete transitions are enabled when the reachable set overlaps 
with the guard condition.

▪ If  reachable set from Θ overlaps with guard 𝐺𝑖 at Θ𝑖,1, Θ𝑖,2, … , Θ𝑖,𝑙. 
That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of  sets to keep track will 
be 𝑙𝑚. (exponential blow-up).
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Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.
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Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.

▪Aggregation introduces overapproximation that 
we can never get rid of!

▪Might cause spurious discrete transitions; cannot 
give concrete counterexamples.

GaTech - October 2018 124



Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.

▪Aggregation introduces overapproximation that 
we can never get rid of!

▪Might cause spurious discrete transitions; cannot 
give concrete counterexamples.

GaTech - October 2018 125



Aggregation – A Necessary Evil

▪Necessary to reduce the number of  sets to keep 
track of.

▪Aggregation introduces overapproximation that 
we can never get rid of!

▪Might cause spurious discrete transitions; cannot 
give concrete counterexamples.

Damned if  you do! 
Damned if  you don’t!
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Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.
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Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set, 
then deaggregate.
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𝑃1 𝑃3𝑃2
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129



Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set, 
then deaggregate.
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Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set, 
then deaggregate.
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𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔
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Model + Real-Time 
Operating Systems Behavior
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Analyzing Real Time Linear Control Systems 
Using Software Verification

Physical Plant

Real Time Operating System

Controller 
Software

sensingactuation

State of plant 𝑥 evolves as
ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

Code

𝑥(𝑡)

time

main(){

……… 

if (…) then 

…

else …

}

Scheduling
Verification that takes all the three

aspects into account

D, Viswanathan RTSS 2015
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Computational Model

1. Control program is a task on RTOS (periodically scheduled).

2. Delay between sensing and actuation (computation time).

3. Control program may or may not make the deadline.

1. Control program is run every T time units.
2. It may/may not make the deadline (TWCRT).
3. If it makes the deadline, results of computation are given as actuation parameters.
4. If it does not make the deadline, computation results are thrown away.
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Software Verification Inspired Technique: 
Outline

Code
Piece

1

Code
Piece

2

+

Software Verification Tools

+

Physical Plant

+
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Bringing These Two Together

Code
Piece

1

Code
Piece

2

+ =

Controller code

Timing Behavior

Updating actuation only when 
deadline is met

Plant behavior
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