
Scalable Formal Verification of
Cyber-Physical Systems

Parasara Sridhar Duggirala

Ground Collision Avoidance System

GaTech - October 2018 2

What Happened?

GaTech - October 2018

Default trajectory

GCAS trajectory

Life saved because of software!

3

Cyber-Physical Systems
Are Everywhere!

GaTech - October 2018 4

Sometimes, CPS have bugs

GaTech - October 2018 5

Sometimes, CPS have bugs

GaTech - October 2018

Disengagement rates
0.16 – 0.78 for 1000 miles

❑ Toyota recalls of Prius vehicles (> 20M).
❑ Software failures in medical devices (approx. 25%)
❑ Northeast power grid blackouts.

Uber self driving car running red light.
https://www.youtube.com/watch?v=_CdJ4oae8f4

6

https://www.youtube.com/watch?v=_CdJ4oae8f4

7

What if software goes
Really Wrong?

GaTech - October 2018

Cyber-Physical Systems
Are Everywhere!

GaTech - October 2018

My Research Goal

Develop Principles, Algorithms, and Tools
for Design, Analysis, and Verification of CPS

8

Why is CPS Verification Hard?

Physical Plant

Operating System

Controller
Software

sensingactuation

GaTech - October 2018 9

Why is CPS Verification Hard?

Physical Plant

Operating System

Controller
Software

sensingactuation

State of plant 𝑥
evolves as
ሶ𝑥 = 𝑓(𝑥, 𝑢)

𝑥(𝑡)

time

GaTech - October 2018 10

Why is CPS Verification Hard?

Physical Plant

Operating System

Controller
Software

sensingactuation

State of plant 𝑥
evolves as
ሶ𝑥 = 𝑓(𝑥, 𝑢)

Code

𝑥(𝑡)

time

main(){

………

if (…) then

…

else …

}

GaTech - October 2018 11

Controls &(vs?) Computer Science
Old School New School

GaTech - October 2018 12

Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic

GaTech - October 2018 13

Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic

GaTech - October 2018

؟هل يمكنك إثبات ذلك

14

Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic

GaTech - October 2018

؟هل يمكنك إثبات ذلك

是的，我可以證明它！

15

Controls &(vs?) Computer Science
Old School

Continuous domain

Based on calculus

New School

Discrete domain

Based on Logic

GaTech - October 2018

؟هل يمكنك إثبات ذلك

是的，我可以證明它！

Not an ideal marriage!
But a necessary one.

16

Challenges in practice

▪ CPS that keep track of time: verification problem is PSPACE Complete

▪ CPS that have simple discontinuity: verification problem is Undecidable

GaTech - October 2018 17

Challenges in practice

▪ CPS that keep track of time: verification problem is PSPACE Complete

▪ CPS that have simple discontinuity: verification problem is Undecidable

▪ If the dynamics is given as “nice” differential equation ሶ𝑥 = 𝐴𝑥 the

solution for ODE is given as 𝑒𝐴𝑡 where 𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴𝑡 2 +⋯.

▪ Scalability – 50 dimensions (before my work).

GaTech - October 2018 18

Challenges in practice

▪ CPS that keep track of time: verification problem is PSPACE Complete

▪ CPS that have simple discontinuity: verification problem is Undecidable

▪ If the dynamics is given as “nice” differential equation ሶ𝑥 = 𝐴𝑥 the

solution for ODE is given as 𝑒𝐴𝑡 where 𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴𝑡 2 +⋯.

▪ Scalability – 50 dimensions (before my work).

▪ For nonlinear systems? Phew! The closed form solution does not exist!

▪ Scalability is just 7-8 dims (for general cases).

GaTech - October 2018 19

What Real Systems Look Like?

GaTech - October 2018

▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time
scales

▪ Uncertainities

▪ Failures

20

What Real Systems Look Like?

GaTech - October 2018

▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time
scales

▪ Uncertainities

▪ Failures

Formal Verification of
industrial CPS?

21

What Real Systems Look Like?

GaTech - October 2018

▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time
scales

▪ Uncertainities

▪ Failures

Formal Verification of
industrial CPS?

Hallelujah!

22

Formal Verification 101

Verification ToolModel

Specification

Counterexample

Certificate

GaTech - October 2018 23

Formal Verification 101

Model Checking

Counterexample

Certificate

Temporal Logic

State Machine

□𝑏 ⇒ 𝑐 𝑈 ⋄ 𝑑

Used extensively in

hardware, software,

and protocol verification

GaTech - October 2018 24

Outline

✓ Motivation

▪ Research Overview

▪ Scalable Verification of Linear
Control Systems

▪ Future Work
GaTech - October 2018 25

Brief Summary of
Past & Ongoing Projects

GaTech - October 2018 26

C2E2: A Tool For Verifying
CPS Models with Nonlinear Dynamics

certificate

CPS models,
requirements

bug trace

C2E2

D, Mitra, Viswanathan EMSOFT’13
D, Mitra, Viswanathan, Potok, TACAS’15.
Fan, Potok, Mitra, Viswanathan , D CAV’16.

Zhenqi et.al. [CAV’14]
Fan et.al. [EMSOFT’16]

GaTech - October 2018 27

Safety Verification Problem

▪ Problem statement: Given dynamics ሶ𝑥 = f(𝑥), initial set Θ, unsafe set
𝑈, and time bound 𝑇, are all trajectories 𝜉(𝑥, 𝑡) starting from Θ, safe?

▪ Tool that is useful: Discrepancy function.

〈𝐾, 𝛾〉 is called an exponential discrepancy function of the system if for any
two states 𝑥1 and 𝑥2 ∈ 𝑋, for any t |𝜉(𝑥1, 𝑡) − 𝜉(𝑥2, 𝑡)| ≤ 𝐾 𝑥1 − 𝑥2 𝑒

𝛾𝑡

GaTech - October 2018

|𝑥1 − 𝑥2|

𝑥1

𝑥2
𝜉 𝑥2, 𝑡

𝜉 𝑥1, 𝑡

≤ 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

= 𝐾 𝑥1 − 𝑥2 𝑒
𝛾𝑡1

28

▪ Always performing a sound analysis :
𝒙𝟏(𝒕) − 𝒙𝟐(𝒕) ≤ 𝜷(|𝒙𝟏 − 𝒙𝟐|, 𝒕)

▪ Improving the partitioning improves the approximation

𝜷 𝒙𝟏 − 𝒙𝟐 , 𝒕 → 𝟎 as 𝒙𝟏 − 𝒙𝟐 → 𝟎

Theorem[Relative Completeness]: Given any HA 𝐴, with an initial set
Θ, and unsafe set 𝑈, if the system is robustly safe (unsafe) then the
algorithm will terminates and return the correct answer

Theorem[Soundness]: Given any HA 𝐴, with an initial set Θ, and
unsafe set 𝑈, if the algorithm terminates and returns safe (unsafe) then
the system is indeed safe (unsafe)

Soundness and
Relative Completeness Results

GaTech - October 2018 29

C2E2: A Tool For Verifying
CPS Models

GaTech - October 2018 30

Powertrain Control Systems

▪ Fuel control and transmission subsystem

• Software control: increasing complexity (100M LOC)
• Constraints: Emissions, Efficiency, etc.
• Strict performance requirements
• Early bug detection using formal methods

GaTech - October 2018 31

Powertrain Control Systems

▪ Fuel control and transmission subsystem

• Software control: increasing complexity (100M LOC)
• Constraints: Emissions, Efficiency, etc.
• Strict performance requirements
• Early bug detection using formal methods

▪ Powertrain control benchmarks from Toyota Jin et.al. [HSCC’14]

▪ Complexity “similar” to industrial systems

▪ Benchmark tool/challenge problems for academic research

Challenge Problem: Verifying one of the models in
the powertrain control benchmark

D, Fan, Mitra, Viswanathan CAV 2015 Fan, D, Mitra, Viswanathan ARCH 2015

GaTech - October 2018 32

Verifying Powertrain Control System
(Challenges)

Hybrid Systems Model
Polynomial ODE Plant

+
Modes of operation

Property
rise ⇒ □[𝜂,𝜁][0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓]

C2E2
(Hybrid Systems

Verification Tool)

Yes

No

GaTech - October 2018 33

Verifying Powertrain Control System
(Challenges)

▪ Mix of discrete and continuous behaviors.

Property
rise ⇒ □[𝜂,𝜁][0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓]

C2E2
(Hybrid Systems

Verification Tool)

Yes

No

GaTech - October 2018 34

Verifying Powertrain Control System
(Challenges)

▪ Mix of discrete and continuous behaviors.

▪ Nonlinear Ordinary Diff. Eqns. – scalability problems

Property
rise ⇒ □[𝜂,𝜁][0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓]

C2E2
(Hybrid Systems

Verification Tool)

Yes

No
ሶp = c1 2θ c20p

2 + c21p + c22 − c12 c2 + c3ωp + c4ωp
2 + c5ωp

2

ሶλ = c26(c15 + c16c25Fc + c17c25
2 Fc

2 + c18 ሶmc + c19 ሶmcc25Fc − λ)

ሶpe = c1 2c23θ c20p
2 + c21p + c22 − c2 + c3ωp + c4ωp

2 + c5ωp
2

ሶi = c14(c24λ − c11)

where

Fc =
1

c11
(1 + i + c13(c24λ − c11))(c2 + c3ωp + c4ωp

2 + c5ωp
2)

ሶmc = c12(c2 + c3ωp + c4ωp
2 + c5ωp

2)

GaTech - October 2018 35

Powertrain Verification Results

Verified many key specification for a given set of driver behaviors

Property Mode Sat Sim. Time

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓, 1.2𝜆𝑟𝑒𝑓] all modes Yes 53 11m58s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓, 1.2𝜆𝑟𝑒𝑓] startup Yes 50 10m21s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓, 1.2𝜆𝑟𝑒𝑓] normal Yes 50 10m21s

□ 𝜆 ∈ [0.8𝜆𝑟𝑒𝑓
𝑝𝑤𝑟

, 1.2𝜆𝑟𝑒𝑓
𝑝𝑤𝑟

] power Yes 53 11m12s

□ 𝜆 ∈ [0.8𝜆′𝑟𝑒𝑓, 1.2𝜆′𝑟𝑒𝑓] power No 4 0m43s

𝑟𝑖𝑠𝑒 ⇒ □(𝜂,𝜉)𝜆 ∈ [0.98 𝜆𝑟𝑒𝑓, 1.02𝜆𝑟𝑒𝑓] normal Yes 50 10m15s

(𝑙 = 𝑝𝑤𝑟) ⇒ □(𝜂,𝜉)𝜆 ∈ [0.95 𝜆𝑟𝑒𝑓, 1.05𝜆𝑟𝑒𝑓] power Yes 53 11m35s

(𝑙 = 𝑝𝑤𝑟) ⇒ □(𝜂/2,𝜉)𝜆 ∈ [0.95 𝜆𝑟𝑒𝑓, 1.05𝜆𝑟𝑒𝑓] power No 4 0m45s

Safety properties

Performance
properties

Won the ‘Best Paper Award’ at ARCH@CPSWeek 2015

GaTech - October 2018 36

Autonomous Vehicle Racing

GaTech - October 2018 37

Autonomous Vehicles
Racing Competition

CPSWeek (April 2018) – Placed 2nd.
ESWeek (October 2018)– Placed 5th.

Embedding Trajectories into Lower
Dimensional Spaces

▪ Trajectories of CPS are difficult to analyze because of 2 reasons.

1. The state space itself is high-dimensional.
2. Trajectories (functions of time) are infinite–dimensional artifacts.

GaTech - October 2018 38

CPS Model

Test 1 Test 2 Test k…

…

𝝉𝟏
𝝉𝟐

𝝉𝒌

D, Sheehy CCCG’18

Embedding Trajectories into Lower
Dimensional Spaces

▪ Trajectories of CPS are difficult to analyze because of 2 reasons.

1. The state space itself is high-dimensional.
2. Trajectories (functions of time) are infinite–dimensional artifacts.

▪ How to reduce dimensionality and think of trajectories as points.

▪ Properties of embeddings (Lipschitz).

▪ Efficiency?

GaTech - October 2018 39

CPS Model

Test 1 Test 2 Test k…

…

𝝉𝟏
𝝉𝟐

𝝉𝒌

D, Sheehy CCCG’18

Scalable Verification of
Linear Control Systems

GaTech - October 2018

D, Viswanathan CAV’16

Bak, D CAV’17
Bak, D TACAS’17

Bak, D ARCH@CPSWeek’17

40

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018 41

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

42

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

43

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

leaderfollower

𝒔𝟏
velocity = 𝑣1;

acceleration = 𝑎1;

Test scenario

44

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

leaderfollower

𝒔𝟏
velocity = 𝑣1;

acceleration = 𝑎1;

𝒔𝒎𝒊𝒏

Test scenario

45

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

leaderfollower

𝒔𝟐
velocity = 𝑣2;

acceleration = 𝑎2;

Bad scenario?

46

Leader-Follower System

leaderfollower

s

velocity = 𝑣;
acceleration = 𝑎;

velocity = 𝑣𝑓;
acceleration = 0;

GaTech - October 2018

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

leaderfollower

𝒔𝟐
velocity = 𝑣2;

acceleration = 𝑎2;

𝒔𝒎𝒊𝒏

Bad scenario?

47

Safety Verification Problem
Given a Linear System ሶ𝑥 = 𝐴𝑥, with initial set Θ and unsafe set 𝑈, are all
the behaviors starting from Θ for bounded time 𝑇𝑏 are safe?

GaTech - October 2018

Θ

U

Dynamics of the system
ሶ𝑠 = 𝑣𝑓 − 𝑣;

ሶ𝑣 = 𝑎 − 𝑘𝑎𝑒𝑟𝑜𝑣;
ሶ𝑎 = 𝑢;
𝑘𝑎𝑒𝑟𝑜 is the air–drag

Control Law
𝑢 = −2𝑎 − 2(𝑣 − 𝑣𝑓);

ሶ𝑠
ሶ𝑣
ሶ𝑎
=

0 −1 0
0 −𝑘𝑎𝑒𝑟𝑜 1
0 −2 −2

𝑠
𝑣
𝑎

+

𝑣𝑓
0
2𝑣𝑓

≜

48

Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.

GaTech - October 2018

𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

49

Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.

GaTech - October 2018

𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models

50

Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.

GaTech - October 2018

𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure
2. Select a time interval ℎ.
3. Compute 𝑃𝑜𝑠𝑡(Θ, ℎ) for [0, ℎ]

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models

51

Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.

GaTech - October 2018

𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure
2. Select a time interval ℎ.
3. Compute 𝑃𝑜𝑠𝑡(Θ, ℎ) for [0, ℎ]
4. Iterate for future intervals.

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models

52

Solution: Reachable Set

System: ሶ𝑥 = 𝐴𝑥, initial set Θ (polyhedra), unsafe set 𝑈.

GaTech - October 2018

𝚯

.
𝜉 𝑥0, 𝑡 = 𝑒𝐴𝑡𝑥0

𝑥0

Procedure to compute reachable set
1. Represent the set Θ using data structure
2. Select a time interval ℎ.
3. Compute 𝑃𝑜𝑠𝑡(Θ, ℎ) for [0, ℎ]
4. Iterate for future intervals.

Data structure
SpaceEx – Support Functions
CORA – Zonotopes
Flow* – Taylor Models

Drawbacks
1. Representation cost grows with n
2. Cannot be directly applied for

time varying linear systems
3. When set changes, entire computation

needs to be done
53

Background

Setup:

• Initial set: 𝐻𝑥 ≤ 𝑔 (bounded polyhedron).
• Unsafe set: 𝑄𝑥 ≤ 𝑟 (conjunction of half-spaces).

▪ Initial attempts (2002): Uses vertices of polyhedral - 𝑂(2𝑛).

▪ Second attempt (2008): Uses support functions - 𝑂(𝑘 × 𝑛2)

▪ [D., Viswanathan] (2015): Uses sparse matrix multiplication.

GaTech - October 2018 54

Main Insight
Dynamics ሶ𝑥 = 𝐴𝑥 has

nice properties.

Why not develop
representations that

leverage these properties!

GaTech - October 2018 55

Property: Superposition

GaTech - October 2018

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

The trajectories form a vector space!

56

Property: Superposition

GaTech - October 2018

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

The trajectories form a vector space!

57

Property: Superposition

GaTech - October 2018

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

𝜉(𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡)

.

.
.v1′

v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

The trajectories form a vector space!

58

Property: Superposition

GaTech - October 2018

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

.
𝛼1v1

′ + 𝛼2v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′

The trajectories form a vector space!

59

Property: Superposition

GaTech - October 2018

𝜉(𝑥0, 𝑡)

𝜉(𝑥1, 𝑡)

𝜉(𝑥2, 𝑡)

.

.
.v1′

v2
′

.
𝛼1v1

′ + 𝛼2v2
′

𝑥0

𝑥1

𝑥2

v2

v1

.

.

.

𝑥0 + 𝛼1v1 + 𝛼2v2

.

From simulations 𝜉0, 𝜉1, and 𝜉2,
we can construct any simulation

starting from a linear span of
𝑥0, 𝑣1, and 𝑣2.

𝜉 𝑥0 + 𝛼1𝑣1 + 𝛼2𝑣2, 𝑡 = 𝜉 𝑥0, 𝑡 + 𝛼1𝑣1
′ + 𝛼2𝑣2

′

The trajectories form a vector space!

60

Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of vectors, 𝑃 – predicate.

GaTech - October 2018

𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑣1

𝑣2

𝑐1

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐1 + 𝛼1𝑣1 + 𝛼2𝑣2
.

61

Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of vectors, 𝑃 – predicate.

GaTech - October 2018

𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5𝑣1

𝑣2

𝑐1

62

Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of vectors, 𝑃 – predicate.

GaTech - October 2018

𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝛼1 ≤ 1 − 𝛼2
2𝑣1

𝑣2

𝑐1

63

Representation: Generalized Stars

▪ Generalized star is represented as 〈𝑐, 𝑉, 𝑃〉

▪ 𝑐 – center, 𝑉 – set of vectors, 𝑃 – predicate.

GaTech - October 2018

𝑐, 𝑉, 𝑃 = 𝑥 ∃ ത𝛼 = (𝛼1, … , 𝛼𝑛), c + Σ𝑖𝛼𝑖𝑣𝑖 = 𝑥, 𝑃 ത𝛼 = ⊤}

𝑃 𝛼1, 𝛼2
≜

𝑣1

𝑣2

𝑐1 𝟏. 𝟓 ∗ 𝒔𝒒𝒓𝒕 -𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟏 ∗
𝒂𝒃𝒔 𝟑 – 𝒂𝒃𝒔 𝒙

𝒂𝒃𝒔 𝒙 – 𝟏 ∗ 𝟑 – 𝒂𝒃𝒔 𝒙
∗ 𝟏 +

𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟑

𝒂𝒃𝒔 𝒙 − 𝟑
∗ 𝒔𝒒𝒓𝒕 𝟏 –

𝒙

𝟕

𝟐

+

𝟒.𝟓 + 𝟎. 𝟕𝟓 ∗ 𝒂𝒃𝒔 𝒙 – 𝟎.𝟓 + 𝒂𝒃𝒔 𝒙 + 𝟎. 𝟓 – 𝟐. 𝟕𝟓 ∗ 𝒂𝒃𝒔 𝒙 − 𝟎. 𝟕𝟓 + 𝒂𝒃𝒔 𝒙 + 𝟎. 𝟕𝟓 ∗ 𝟏 +
𝒂𝒃𝒔 𝟏 – 𝒂𝒃𝒔 𝒙

𝟏 – 𝒂𝒃𝒔 𝒙

-𝟑 ∗ 𝒔𝒒𝒓𝒕 𝟏 −
𝒙

𝟕

𝟐

∗ 𝒔𝒒𝒓𝒕
𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟒

𝒂𝒃𝒔 𝒙 − 𝟒
, 𝒂𝒃𝒔

𝒙

𝟐
– 𝟎. 𝟎𝟗𝟏𝟑𝟕𝟐𝟐 ∗ 𝒙𝟐 − 𝟑 + 𝒔𝒒𝒓𝒕 𝟏 – 𝒂𝒃𝒔 𝒂𝒃𝒔 𝒙 – 𝟐 – 𝟏 𝟐 ,

(𝟐. 𝟕𝟏𝟎𝟓𝟐+ 𝟏. 𝟓 – 𝟎. 𝟓 ∗ 𝒂𝒃𝒔(𝒙) – 𝟏. 𝟑𝟓𝟓𝟐𝟔 ∗ 𝒔𝒒𝒓𝒕(𝟒 – (𝒂𝒃𝒔(𝒙) – 𝟏)^𝟐)) ∗ 𝒔𝒒𝒓𝒕(𝒂𝒃𝒔(𝒂𝒃𝒔(𝒙) – 𝟏)/(𝒂𝒃𝒔(𝒙) – 𝟏))

64

Technique: Basic Idea

▪ Given initial set Θ = ⟨𝑐, 𝑉, 𝑃⟩, the Reach is computed not as new
predicate, but is done by changing the center and the basis vectors.

GaTech - October 2018

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

D, Viswanathan CAV’16

65

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set

GaTech - October 2018

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

66

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

GaTech - October 2018

𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

67

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

GaTech - October 2018

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

68

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

GaTech - October 2018

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

69

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

GaTech - October 2018

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

70

Technique
Representation + Superposition

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

GaTech - October 2018

𝑐 𝑣1

𝑣2

𝑐′
𝑣2
′

𝑣1
′

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

71

Reachable Set Computation Using
Simulations For Generalized Stars

Given Θ ≜ 〈𝑐, 𝑉, 𝑃〉 to compute reachable set
1. Simulate from 𝑐
2. Simulate from 𝑐 + 𝑣𝑖 for each 𝑖

Reachable set at time 𝑡 is given by 〈𝑐′, 𝑉′, 𝑃〉 where
1. 𝑐′ is the simulation corresponding to 𝑐
2. 𝑣𝑖′ is the difference of simulations from 𝑐 + 𝑣𝑖 and from 𝑐

GaTech - October 2018

𝑐 𝑣1

𝑣2

𝑐′
𝑣1
′

𝑣2
′

𝛼1 ≤ 1 − 𝛼2
2

𝛼1 ≤ 1 − 𝛼2
2

Observation: 𝑹𝒆𝒂𝒄𝒉 preserves
the “shape” of the initial set.

Θ ≜ 〈𝑐, 𝑉, 𝑃〉

Reach(Θ, t) ≜ 〈𝑐′, 𝑉′, 𝑃〉

72

Demo

GaTech - October 2018 73

Extensions

▪Accommodate mode switches.

▪Developed new invariant constraint
propagation technique.

▪Dynamic aggregation and deaggregation
methods.

▪Handle Linear systems with
inputs/disturbances.

GaTech - October 2018 74

Experimental Evaluation
HyLAA

Scalability with respect to number of dimensions.

GaTech - October 2018 http://stanleybak.com/hylaa/ 75

http://stanleybak.com/hylaa/

Running HyLAA on
High Dimensional Benchmarks

• Motor (11 dims)

• Building (50 dims)

• Partial Differential Equation (86 dims)

• Heat (202 dims)

• International Space Station (274 dims)

• Clamped Beam (350 dims)

• MNA1 (588 dims)

• FOM (1008 dims)

• MNA5 (10923 dims)

GaTech - October 2018

Won the ‘Best Paper Award’ at ARCH@CPSWeek 2017

76

HyLAA
Constraint Propagation

GaTech - October 2018 http://stanleybak.com/hylaa/ 77

http://stanleybak.com/hylaa/

HyLAA
Aggregation and Deaggregation

▪ Expensive to not have any
aggregation.

▪ Completely aggregated
introduces new transitions
and doesn’t terminate.

▪ Dynamic deaggregation
has 1.2x – 5x speedup
based on the system.

GaTech - October 2018 http://stanleybak.com/hylaa/ 78

http://stanleybak.com/hylaa/

HyLAA
Aggregation and Deaggregation

▪ Automotive drivetrain system with additional masses (8 + 2𝜃).

▪ In lower dimensions, the synchronous behavior of masses gives a
better performance for aggregation.

▪ In higher dimensions, the benefits of aggregation are low because
deaggregation is performed more often.

GaTech - October 2018 http://stanleybak.com/hylaa/ 79

http://stanleybak.com/hylaa/

GaTech - October 2018 80

International Space Station Model
(271 dimensions)

▪ The original safety specification was created using
simulations. For most models it was safe.

▪ For the International Space Station model, however, it
was not! This shows that simulation can miss errors.
The error was not known before analysis with Hylaa.

GaTech - October 2018 81

Reachability Plot

GaTech - October 2018 82

Space Station Specification Violation

𝗔 =

𝐴11 𝐴12 ⋯ 𝐴1𝑛
𝐴21 𝐴2𝑛
⋮ ⋮

𝐴𝑛1 𝐴𝑛2 ⋯ 𝐴𝑛𝑛

▪ 2270 × 8(13.71/0.005) = 3 × 102557 cases!

▪ Falsification tool did not succeed after 4 hours.

Counterexample Generation

▪ Control parameter tuning for regulation.

▪ Any execution that crosses the threshold is not useful.

▪ Executions that go “maximum” beyond the threshold are more
important than others.

▪ Executions that stay longer above threshold are also important.

GaTech - October 2018 83

Longest and Deepest Counterexamples

▪ Deepest counterexample: execution that ventures into unsafe set
resulting in a maximum “depth”.

▪ Longest counterexample: execution that stays for longest in
unsafe set contiguously.

▪ Using constraint propagation, developed a new technique that
generates these two counterexamples.

GaTech - October 2018 84

Future Work

GaTech - October 2018 85

What Real Systems Look Like?

GaTech - October 2018

▪ Nonlinear

▪ Complex software

▪ Distributed

▪ Heterogenuous time
scales

▪ Uncertainities

▪ Failures

86

Who Gives The Specification?

▪ For each component?

▪ In a temporal logic?

Absolutely unrealistic!

GaTech - October 2018
87

Who Gives The Specification?
▪ For each component?

▪ In a temporal logic?

Absolutely unrealistic!

GaTech - October 2018

Verification without
specification!

88

Sometimes, CPS have bugs

GaTech - October 2018

Disengagement rates
0.16 – 0.78 for 1000 miles

❑ Toyota recalls of Prius vehicles (> 20M).
❑ Software failures in medical devices (approx. 25%)
❑ Northeast power grid blackouts.

Uber self driving car running red light.
https://www.youtube.com/watch?v=_CdJ4oae8f4

89

https://www.youtube.com/watch?v=_CdJ4oae8f4

An Enabling Technology

90GaTech - October 2018

An Enabling Technology

91GaTech - October 2018

How Is This Different From Design
Verification?

System – I

System – II

Verifier – I

Verifier – II

Proof – I

Proof – II

Counterexample – I

Counterexample – II

Layer – I (say control design)

Layer – II (say software implementation)

GaTech - October 2018 [92]

How Is This Different From Design
Verification?

System – I

System – II

Verifier – I

Verifier – II

Proof – I

Proof – II

Counterexample – I

Counterexample – II

Layer – I (say control design)

Layer – II (say software implementation)

Do the proofs work together?
GaTech - October 2018 [93]

A Layered Approach For End-To-End
Verification of Autonomous Vehicles

+

+

Plant
+

Noisy environment

Software verification of
embedded code

Scheduling analysis

Hardware correctness proofs

Sound approx. model

+

Model checking
hybrid systems

+

GaTech - October 2018 [94]

Robust w.r.t. perturbation proof.

Conformance Checking

Scheduler verification

System Identification Analysis

Let’s Hope For a Day Where Autonomous Vehicles and Humans
Coexist Peacefully

GaTech - October 2018 95

Thank You

▪ Developed algorithms for verification of nonlinear systems.

▪ Scalable linear systems verification.

Future work

▪ Verification without specification

▪ Certification of autonomous vehicles

GaTech - October 2018 96

Questions?

Backup Slides

GaTech - October 2018 97

Observations

1. The discrete time reachable set doesn’t change the predicate
associated with the star.

GaTech - October 2018

𝑐 𝑣1

𝑣2
Θ ≜ 〈𝑐, 𝑉, 𝑃〉

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

𝑐′
𝑣2
′

𝑣1
′ 𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1

Θ𝑖 ≜ 〈𝑐′, 𝑉′, 𝑃〉

98

Observations

1. The discrete time reachable set doesn’t change the predicate
associated with the star.

GaTech - October 2018

Θ ≜ 〈𝑐, 𝑉, 𝑃〉
𝑐 𝑣1

𝑣2

𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

𝑐′
𝑣2
′

𝑣1
′ 𝛼1 ≤ 1 ∧ 𝛼2 ≤ 1 ∧ 𝛼1 + 𝛼2 ≤ 1.5

To compute reachable set of a new initial set, just
changing the predicate suffices!

Θ𝑖 ≜ 〈𝑐′, 𝑉′, 𝑃〉

99

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

Notice: all have same center and
basis in their representation

100

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝑷𝟏

𝑷𝟐

Notice: all have same center and
basis in their representation

101

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

Notice: all have same center and
basis in their representation

102

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

Want to deaggregate?

Notice: all have same center and
basis in their representation

103

Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

GaTech - October 2018

𝑷𝟏

𝑷𝟐
𝚯𝒂𝒈𝒈 = ⟨𝒄, 𝑽, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏 = ⟨𝒄, 𝑽, 𝑷𝟏⟩

𝚯𝟐 = ⟨𝒄, 𝑽, 𝑷𝟐⟩

(𝑷𝟏 ∨ 𝑷𝟐) ⇒ 𝑷𝒂𝒈𝒈

𝚯𝒂𝒈𝒈
′ = ⟨𝒄′, 𝑽′, 𝑷𝒂𝒈𝒈⟩

𝚯𝟏
′ = ⟨𝒄′, 𝑽′, 𝑷𝟏⟩

𝚯𝟐
′ = ⟨𝒄′, 𝑽′, 𝑷𝟐⟩

𝑷𝟏

𝑷𝟐
Want to deaggregate?
Just change the predicates!

Notice: all have same center and
basis in their representation

104

Handling Invariants and
Discrete Transitions

GaTech - October 2018 105

The Problems With Invariants

▪ Given Θ1, Θ2, … , Θ𝑘 as discrete time reachable sets for a given
mode, performing just Θ𝑗 ∩ 𝐼𝑛𝑣 only gives an overapproximation.

GaTech - October 2018

Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙)

106

The Problems With Invariants

▪ Given Θ1, Θ2, … , Θ𝑘 as discrete time reachable sets for a given
mode, performing just Θ𝑗 ∩ 𝐼𝑛𝑣 only gives an overapproximation.

GaTech - October 2018

Θ𝑖

Θ𝑖+1

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1

𝐼𝑛𝑣(𝑙) Q) How to compute 𝑨𝒄𝒕𝒖𝒂𝒍𝑹𝒆𝒂𝒄𝒉𝒊+𝟏?
A) Use constraint propagation!

107

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

Θ = ⟨𝑐, 𝑉, 𝑃⟩

108

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

Θ = ⟨𝑐, 𝑉, 𝑃⟩

⟨𝒄𝒊, 𝑽𝒊, 𝑸𝒊⟩

109

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

⟨𝒄𝒊, 𝑽𝒊, 𝑸𝒊⟩

110

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

⟨𝒄𝒊, 𝑽𝒊, 𝑸𝒊⟩ ⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑸𝒊+𝟏⟩

111

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

⟨𝒄𝒊, 𝑽𝒊, 𝑸𝒊⟩ ⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑸𝒊+𝟏⟩

112

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Θ𝑖 ∩ 𝐼𝑛𝑣 𝑙 Originated from
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩

113

Forward Constraint Propagation

1. Convert 𝐼𝑛𝑣 into the center and basis of 𝑖𝑡ℎ star as ⟨𝑐𝑖 , 𝑉𝑖 , 𝑄𝑖⟩.

2. Θ ∩ 𝐼𝑛𝑣 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃 ∧ 𝑄𝑖⟩

3. These should originate from ⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩ in Θ

4. Propagate constraint 𝑄𝑖 forward --- add it to predicates of itself
and all future stars.

GaTech - October 2018

𝐼𝑛𝑣(𝑙)

Θ𝑖 = ⟨𝑐𝑖 , 𝑉𝑖 , 𝑃⟩

Θ𝑖+1 = ⟨𝑐𝑖+1, 𝑉𝑖+1, 𝑃⟩

Θ𝑖 ∩ Inv(l)

Θ𝑖+1 ∩ Inv(l)

ActualReachi+1
⟨𝒄𝒊, 𝑽𝒊, 𝑷 ∧ 𝑸𝒊⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊+𝟏⟩

⟨𝒄𝒊+𝟏, 𝑽𝒊+𝟏, 𝑷 ∧ 𝑸𝒊 ∧ 𝑸𝒊+𝟏⟩

Θ = ⟨𝑐, 𝑉, 𝑃⟩

Θ𝑖 ∩ 𝐼𝑛𝑣 𝑙 Originated from
⟨𝑐, 𝑉, 𝑃 ∧ 𝑄𝑖⟩

114

Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of Θ𝑖 as
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. Add constraint 𝑄𝑖 to the predicate of Θ𝑖 , Θ𝑖+1, … , Θ𝑘.

GaTech - October 2018 115

Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of Θ𝑖 as
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. Add constraint 𝑄𝑖 to the predicate of Θ𝑖 , Θ𝑖+1, … , Θ𝑘.

GaTech - October 2018 116

Invariant Constraint Propagation

1. Compute reachable sets Θ1, Θ2, … , Θ𝑘.

2. Convert 𝐼𝑛𝑣 into star representation of Θ𝑖 as
𝑐1, 𝑉1, 𝑄1 , 𝑐2, 𝑉2, 𝑄2 , … , 𝑐𝑘 , 𝑉𝑘 , 𝑄𝑘

3. Add constraint 𝑄𝑖 to the predicate of Θ𝑖 , Θ𝑖+1, … , Θ𝑘.

GaTech - October 2018 117

Optimizations

1. If Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

GaTech - October 2018 118

Optimizations

1. If Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)

GaTech - October 2018 119

Optimizations

1. If Θ𝑖 ⊆ 𝐼𝑛𝑣, then 𝑃 ∧ 𝑄𝑖 ≡ 𝑃. Hence, no constraint is added.

2. If Θ𝑖 ⊆ 𝐼𝑛𝑣𝑐 , then 𝑃 ∧ 𝑄𝑖 ≡ ⊥. Hence, no need to add 𝑄𝑖.

3. Add a constraint 𝑄𝑖 to 𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 if and only if
¬(𝑃 ∧ 𝑄1 ∧ ⋯∧ 𝑄𝑖−1 ⇒ 𝑄𝑖)

4. [Empirical heuristic]: Compare successive constraints 𝑄𝑖 and
𝑄𝑖+1 and if 𝑄𝑖+1 is stronger than 𝑄𝑖, replace 𝑄𝑖 with 𝑄𝑖+1.

GaTech - October 2018 120

Discrete Transitions

▪ Discrete transitions are enabled when the reachable set overlaps
with the guard condition.

▪ If reachable set from Θ overlaps with guard 𝐺𝑖 at Θ𝑖,1, Θ𝑖,2, … , Θ𝑖,𝑙.
That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of sets to keep track will
be 𝑙𝑚. (exponential blow-up).

GaTech - October 2018 121

Discrete Transitions

▪ Discrete transitions are enabled when the reachable set overlaps
with the guard condition.

▪ If reachable set from Θ overlaps with guard 𝐺𝑖 at Θ𝑖,1, Θ𝑖,2, … , Θ𝑖,𝑙.
That is, Θ has 𝑙 successor sets.

▪ After 𝑚 discrete transitions, the number of sets to keep track will
be 𝑙𝑚. (exponential blow-up).

GaTech - October 2018 122

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

GaTech - October 2018 123

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

▪Aggregation introduces overapproximation that
we can never get rid of!

▪Might cause spurious discrete transitions; cannot
give concrete counterexamples.

GaTech - October 2018 124

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

▪Aggregation introduces overapproximation that
we can never get rid of!

▪Might cause spurious discrete transitions; cannot
give concrete counterexamples.

GaTech - October 2018 125

Aggregation – A Necessary Evil

▪Necessary to reduce the number of sets to keep
track of.

▪Aggregation introduces overapproximation that
we can never get rid of!

▪Might cause spurious discrete transitions; cannot
give concrete counterexamples.

Damned if you do!
Damned if you don’t!

GaTech - October 2018 126

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

GaTech - October 2018

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

127

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

GaTech - October 2018

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

128

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set,
then deaggregate.

GaTech - October 2018

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

129

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set,
then deaggregate.

GaTech - October 2018

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

130

Dynamic Aggregation
Illustration

1. Aggregate all the sets by default and compute reachable set.

2. When the aggregated set intersects with a guard or unsafe set,
then deaggregate.

GaTech - October 2018

𝑃1 𝑃3𝑃2

𝑃𝑎𝑔𝑔Θ𝑎𝑔𝑔

131

Model + Real-Time
Operating Systems Behavior

GaTech - October 2018 132

Analyzing Real Time Linear Control Systems
Using Software Verification

Physical Plant

Real Time Operating System

Controller
Software

sensingactuation

State of plant 𝑥 evolves as
ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

Code

𝑥(𝑡)

time

main(){

………

if (…) then

…

else …

}

Scheduling
Verification that takes all the three

aspects into account

D, Viswanathan RTSS 2015

GaTech - October 2018 133

Computational Model

1. Control program is a task on RTOS (periodically scheduled).

2. Delay between sensing and actuation (computation time).

3. Control program may or may not make the deadline.

1. Control program is run every T time units.
2. It may/may not make the deadline (TWCRT).
3. If it makes the deadline, results of computation are given as actuation parameters.
4. If it does not make the deadline, computation results are thrown away.

GaTech - October 2018 134

Software Verification Inspired Technique:
Outline

Code
Piece

1

Code
Piece

2

+

Software Verification Tools

+

Physical Plant

+

GaTech - October 2018 [135]

Bringing These Two Together

Code
Piece

1

Code
Piece

2

+ =

Controller code

Timing Behavior

Updating actuation only when
deadline is met

Plant behavior

GaTech - October 2018 [136]

