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What Happened?

GCAS trajectory  _ 5

Life saved because of software!
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Are Everywhere!

Cyber-Physical Systems




Sometimes, CPS have bugs

BUNNESS DAY

Self-Driving Tesla Was Involved in Fatal Crash, U.S. Says
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Uber suspended from autonomous vehicle testing
in Arizona following fatal crash

Arizona governor calls Uber crash an unguestionable failure
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Tesla Says Crashed Vehicle Had Been on Autopilot Before Fatal Accident
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Sometimes, CPS have bugs

BUNNESS DAY

Self-Driving Tesla Was Involved in Fatal Crash, U.S. Says
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Uber suspended from autonomous vehicle testing
in Arizona following fatal crash

1Izona governor calls Uber crash an unguestionable failure

@
‘n./ \
3 &
o “ California's Autonomous Car Reports Are The Best
< In The Country—But Nowhere Near Good Enough
b “~ Ryan Felton
» ° GENERAL MOTCRS «

S Disengagement rates
Tesla Says Crashed Vehicle Had Been on Autopilot Before Fatal Accident 0.16 - 0'78 f()r 1000 miles

R (1 N+

Uber self driving car running red light.
https://www.youtube.com/watchv=_Cd]40ae84

O Toyota recalls of Prius vehicles (> 20M).
O Software failures in medical devices (approx. 25%)
0 Northeast power grid blackouts.
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https://www.youtube.com/watch?v=_CdJ4oae8f4
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AMAZON DRONE DROPS PACKAGE ON PEDESTRIANS NEAD, INJURES HIM SERIQUSLY.
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Hoomsday

Google Car Claims 100 Live
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Smart-Grid plays
dumb, causes 48

Menio Park, CA. 0 Google  companies like Microsofl,  foll
car claimed the lives of  Facebook, and Amszon imy
100 individuals. Sources  issued public stalements

hours national
blackout
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Cyber-Physical Systems
Are Everywhere!

My Research Goal

Develop Principles, Algorithms, and Tools

_— for Design, Analysis, and Verification of CPS



Why 1s CPS Veritication Hard?

Physical Plant

actuation sensing

Operating System

GaTech - October 2018



Why 1s CPS Veritication Hard?

Physical Plant

/

actuation

Operating System

sensing

State of plant x
evolves as

x = fxu)
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Why 1s CPS Veritication Hard?

/'

actuation

Operating System \

sensing

x(t)

State of plant x /\/\/

evolves as

x = fxu)

Code
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time

main(){

if (..) then

else ..
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Controls &(vs?) Computer Science
Old School New School

GaTech - October 2018
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Controls &(vs?) Computer Science
Old School New School

~

Continuous domain

Based on calculus Based on Logic

= f(x,u) ((a A=b) = c)V (dAe)
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Controls &(vs?) Computer Science

Old School | ¢at3 el ey JA New School

Based on calculus Based on Logic

= f(x,u) ((a A=b) = c)V (dAe)
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Controls &(vs?) Computer Science
New S

chool

Based on calculus Based on Logic

= f(x,u) ((a A=b) = c)V (dAe)
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Controls &(vs?) Computer Science

ool

Based on calculus Based on Logic
= f(x,u) ((a A=b) = c)V (dAe)

Not an ideal marriage!

But a necessary one.

GaTech - October 2018 16



Challenges in practice

" CPS that keep track of time: verification problem is PSPACE Complete

= CPS that have simple discontinuity: verification problem is Undecidable
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Challenges in practice

" CPS that keep track of time: verification problem is PSPACE Complete

= CPS that have simple discontinuity: verification problem is Undecidable
" If the dynamics is given as “nice” differential equation x = Ax the

solution for ODE is given as el where e4t = [ + At + % (At)? + ---.

" Scalability — 50 dimensions (before my work).
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Challenges in practice

" CPS that keep track of time: verification problem is PSPACE Complete

= CPS that have simple discontinuity: verification problem is Undecidable
" If the dynamics is given as “nice” differential equation x = Ax the
solution for ODE is given as el where e4t = [ + At + % (At)? + ---.

" Scalability — 50 dimensions (before my work).

" For nonlinear systems? Phew! The closed form solution does not exist!

" Scalability 1s just 7-8 dims (for general cases).
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What Real Systems ILook Like?

= Nonlinear
" Complex software
= Distributed

" Heterogenuous time
scales

®» Uncertainities

= Failures
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What Real Systerns Look Liker

® Nonlinear

" Complex software

. N e - % ke | &

" Heterogenuous time 4 oo |
scales _

= Uncertainities " Pt e |

= Failures i 4 e },

Formal Verification of

industrial CPS?
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What Real Systerns Look Liker

® Nonlinear

" Complex software

. N e - % ke | &

" Heterogenuous time 4 oo |
scales _

= Uncertainities " Pt e |

= Failures i 4 e },

Formal Verification of

industrial CPS?

Hallelujah! = e
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Formal Verification 101

Model __ 4 Veritication Tool

Specification

GaTech - October 2018
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Formal Verification 101

State Machine

4 Model Checking

Used extensively in Temporal Logic
hardware, software, ab = cUod

and protocol verification

GaTech - October 2018

24



Outline

v’ Motivation
B Research Overview

m Scalable Verification of Linear
Control Systems

" Future Work

GaTech - October 2018
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Briet Summary ot
Past & Ongoing Projects



C2E2: A Tool For Verifying
CPS Models with Nonlinear Dynamics

/ -~

CPS models, bug trace
requirements C ZE 2
& £

certificate

D, Mitra, Viswanathan EMSOFT’13 henci ot al ,

D, Mitra, Viswanathan, Potok, TACAS’15. Zhengi etal. [CAV'14]

Fan, Potok, Mitra, Viswanathan , D CA¥’ L6. Fan et.al. [EMSOFT"16]
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Safety Veritication Problem

* Problem statement: Given dynamics X = f(x), initial set O, unsafe set
U, and time bound T, are all trajectories ¢ (x, t) starting from 0, safe?

" Tool that is useful: Discrepancy function.

(K,y) is called an exponential discrepancy function of the system if for any
two states X; and X, € X, for any t [§(x1,t) — E(xy, t)| < K|x; — xy|e??
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Soundness and
Relative Completeness Results

= Always performing a sound analysis :

[x1 (&) —x2(8) | < B(|x1 — x3|, )

" Improving the partitioning improves the approximation
B(x1 —x3[,t) > 0as|x;y — x| > 0

Theorem|Soundness|: Given any HA A, with an initial set ©, and
unsafe set U, if the algorithm terminates and returns safe (unsafe) then

the system is indeed safe (unsafe)

Theorem|Relative Completeness|: Given any HA A, with an initial set

®, and unsafe set U, if the system is robustly safe (unsafe) then the
algorithm will terminates and return the correct answer

GaTech - October 2018
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C2E2: A Tool For Veritying

CPS Models
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Powertrain Control Systems

" Fuel control and transmission subsystem
* Software control: increasing complexity (100M LOC)
* Constraints: Emissions, Efficiency, etc.
 Strict performance requirements

» Early bug detection using formal methods
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Powertrain Control Systems

" Fuel control and transmission subsystem
» Software control: increasing complexity (100M LOC)
* Constraints: Emissions, Efficiency, etc.

 Strict performance requirements

» Early bug detection using formal methods

" Powertrain control benchmarks from Toyota Jin et.al. [HSCC’14]
" Complexity “similar” to industrial systems

" Benchmark tool/challenge problems for academic research

D, Fan, Mitra, Viswanathan CAV 2015 Fan, D, Mitra, Viswanathan ARCH 2015

Challenge Problem: Verifying one of the models in

the powertrain control benchmark

GaTech - October 2018 32




Veritying Powertrain Control System

(Challenges)
Hybrid Systems Model
Polynomial ODE Plant
Modes of+operation % C ZEZ
(Hybrid Systems

& Verification Tool)
Property
|

rise = D[n’(] [098 Aref, 102)lref

GaTech - October 2018
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Veritying Powertrain Control System
= (Challenges)

timer = T,

sensorFail

C2E2

(Hybrid Systems
Verification Tool)

rise = D[n’(] [098 Aref, 102)lref]

® Mix of discrete and continuous behaviors.
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Veritying Powertrain Control System
T (Challenges)

x = f(x)
—

R

timer = T,

.
normal

x= fn(x)

sensorFail

P = C1(29(C20P2 + C21P + C22) — €12(cy + cz30p + cuwp® + c5mp2))
A = C6(Cy5 + C16C25F¢ + €17C55FE + cigtic + C1omicCosFe — A)

Prc Pe = C1(2C239(C20p2 + Co1p + C33) — (c3 + c30p + c wp? + CS(DPZ))
rise = Op, 1[0 I = c14(C24A —C11)

where
1 .
Fe. = o (1 41+ cy3(c24A — ¢11))(Ccy + c3wp + cup? + cswp?)

m, = ¢y5(cy + c3wp + c,wp? + cswp?)

" Mix of discrete and continuous behaviors.

" Nonlinear Ordinary Diff. Eqns. — scalability problems

GaTech - October 2018 35



Powertrain Verification Results

Veritied many key specification for a given set of driver behaviors

IR RN

OA € [0.84,.r, 1.24,¢f] all modes
OA € [0.8A¢f, 1.24,¢f] startup Yes
OA € [0.84,0r, 1.24,¢f] normal Yes
O € [0.847;7, 1.247,7 ] power Yes
O € [0.81 e, 1.211¢f] power No
rise = O e)d € [0.98 Aper, 1.024,4¢] normal Yes
(L =pwr) = O 54 € [0.95 Apep, 1.054,¢] power Yes

(l = pWT') = D(n/Z,f)A € [095 Aref: 105/11‘6]"] power No

50

50

53

50

53

11m58s
10m21s
10m21s
11m12s
Om43s
10m15s
11m35s

Om45s

R

_ Safety properties

Performance
properties

Won the ‘Best Paper Award’ at ARCH@CPSWeek 2015

GaTech - October 2018
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Autonomous Vehicle Racing

Autonomous Vehicles
Racing Competition

CPSWeek (April 2018) - Placed 204,
ESWeek (October 2018)- Placed 5.

GaTech - October 2018
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Embedding Trajectories into Lower
Dimensional Spaces

CPS Model

L] L) L]
" Trajectories of CPS are difficult to analyze because of 2 reasons.

1. The state space itself is high-dimensional.

2. Trajectories (functions of time) are infinite-dimensional artifacts.

D, Sheehy CCCG’18

GaTech - October 2018 38



Embedding Trajectories into Lower
Dimensional Spaces

CPS Model °

L] L) L]
" Trajectories of CPS are difficult to analyze because of 2 reasons.
1. The state space itself is high-dimensional.

2. Trajectories (functions of time) are infinite-dimensional artifacts.

" How to reduce dimensionality and think of trajectories as points.

" Properties of embeddings (Lipschitz).

. EfﬁCiCﬁCY? D, Sheehy CCCG’18

GaTech - October 2018
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Scalable Verification of
Linear Control Systems

D, Viswanathan CAV’16
Bak, D TACAS’17

Bak, D CAV’17

Bak, D ARCH@CPSWeek’17

GaTech - October 2018
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Leader-Follower System

velocity = v; velocity = vf;
acceleration = a; acceleration = 0;
: -
< ----------------------------- >
follower leader

GaTech - October 2018

41



Leader-Follower System

velocity = v;

acceleration =

a;

velocity = vf;
acceleration = 0;

follower

GaTech - October 2018

Dvnamics of the system

S = v — U,
a=u;

42



velocity = v;
acceleration = a;

follower

Leader-Follower System

velocity = vf;

acceleration = 0;

GaTech - October 2018

r *
Dvnamics of the system
S = v — U,

v=a —KkgeroV;
a=u;

Control Law

u=-2a—2v — vy);

J

N\
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Leader-Follower System

r 1
Dynamics of the system
velocity = v; velocity = vf; S = vf — U,
acceleration = @; acceleration = 0; V=a — KkgproV;
—————————————————— a=u;
< ............... $ ............. ) - kaero iS the air_drag
"""""""""""" Control Law
follower leader u=-2a—-2v —v);
\ J
velocity = vy;
acceleration = ay; S1
<. -------------------------------------------- >
a9
follower leader

Test scenario

GaTech - October 2018
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r 1
Dynamics of the system
velocity = v; velocity = vf; S = vf — U,
acceleration = @; acceleration = 0; V=a — KkgproV;
—————————————————— a=u;
< ............... S ............. ) - kaero iS the air_drag
"""""""""""" Control Law
follower leader u=-2a—-2v —v);
\ J

Leader-Follower System

velocity = vy;
acceleration = ay; S1

follower leader

Test scenario

GaTech - October 2018
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Leader-Follower System

velocity = v; velocity = vf; S = vf — U,

acceleration = a; acceleration = 0; v

- kg ero is the air-drag

follower leader

r : 2
Dvnamics of the system
=a — kaerov;
a=u;
Control Law
u=-2a—2v —vy); )

velocity = v,;
acceleration = a,;

[ . . Control Law

u==da=2v =)

follower leader

Bad scenario?

GaTech - October 2018
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Leader-Follower System

velocity = v; velocity = vf; S = vf — U,

acceleration = a; acceleration = 0;

Kemrnnnnnnnnnnnn s ............. > - kaero iS the air_drag

follower leader

f . N
Dvnamics of the system
V=a — KgeroV;
a=u;
Control Law
u=-2a—2v —v); |

velocity = v,;
acceleration = ay; S92

follower leader

Bad scenario?

GaTech - October 2018
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Safety Veritication Problem

Given a Linear System x = Ax, with initial set ® and unsafe set U, are all
the behaviors starting from © for bounded time T}, are safe?

r : 2
Dvnamics of the system

S = Vr — U;

v=a — k..U $ 0o -1 01[s Vr

d = Uu, e A [U] = lo _kaero 1 v+ 0
’ - la 0 -2 =2lla 205

Control Law
u=-2a—-2wv —vy); )

GaTech - October 2018 48



Solution: Reachable Set

System: X = Ax, initial set ©® (polyhedra), unsafe set U.

E(xo, t) = e?tx

GaTech - October 2018
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Solution: Reachable Set

System: X = Ax, initial set ©® (polyhedra), unsafe set U.

E(xo, t) = e?tx

Procedure to compute reachable set
1. Represent the set © using data structure

Data structure

SpaceEx - Support Functions

CORA - Zonotopes
Flow* - Taylor Models

GaTech - October 2018 50



Solution: Reachable Set

System: X = Ax, initial set ©® (polyhedra), unsafe set U.

f(xO; t) = eAtxO

Procedure to compute reachable set
1. Represent the set © using data structure
2. Select a time interval h.

3. Compute Post(0, h) for [0, h]

Data structure

SpaceEx - Support Functions

CORA - Zonotopes
Flow* - Taylor Models
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Solution: Reachable Set

System: X = Ax, initial set ©® (polyhedra), unsafe set U.

f(xO; t) = eAtxO

2.
3. Compute Post(0, h) for [0, h]
4.

[terate for future intervals.

Data structure

SpaceEx - Support Functions

CORA - Zonotopes
Flow* - Taylor Models

GaTech - October 2018

l ‘ Procedure to compute reachable set
1. Represent the set © using data structure
Select a time interval h.
0

52



Solution: Reachable Set

System: X = Ax, initial set ® (polyhedra), unsafe set U.

g(th t) = eAtxO

‘ Procedure to compute reachable set
1. Represent the set © using data structure
2. Select a time interval h.

3. Compute Post(0, h) for [0, h]

4. Tterate for future intervals.

Drawbacks
1. Representation cost grows with n
2. Cannot be directly applied for
time varying linear systems
3. When set changes, entire computation

needs to be done
GaTech - October 2018 53

Data structure

SpaceEx - Support Functions

CORA - Zonotopes
Flow* - Taylor Models



Background

Setup:
* Initial set: Hx < g (bounded polyhedron).
* Unsafe set: Qx < r (conjunction of half-spaces).

® Tnitial attempts (2002): Uses vertices of polyhedral - O(2™).
= Second attempt (2008): Uses support functions - O (k X n#)

= [D., Viswanathan] (2015): Uses sparse matrix multiplication.

GaTech - October 2018
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Main Insight

Dynamics x = Ax has
nice properties.

Why not develop
representations that
leverage these properties!



Property: Superposition

The trajectories form a vector space!

GaTech - October 2018
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Property: Superposition

The trajectories form a vector space!

X0 ~+ a1Vq + a,v,

GaTech - October 2018
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Property: Superposition
The trajectories form a vector space.
'R S
vij T i)

1
A
\%
23 §(xo,t)
3

§(x2,1)

T

$(xg + ayvg + ayv,, t)

X0 ~+ a1Vq + a,v,

GaTech - October 2018
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Property: Superposition

The trajectories form a vector space!

E(xg + aqvy + ayv,, t) = E(xg, t) + aqv; + ayvy

X0 ~+ a1Vq + a,v,

GaTech - October 2018
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Property: Superposition

The trajectories form a vector space!

E(xg + aqvy + ayv,, t) = E(xg, t) + aqv; + ayvy

From simulations &y, &;, and &,,
we can construct any simulation

Xo starting from a linear span of
v, X0, V1, and V.
\
¥
% X0 + a1Vq + a,v,
2

GaTech - October 2018
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Representation: Generalized Stars

" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

v | S G + a0 + azv; P((“l: %) ))
! A

ci| v la | < 1A|ay| <1
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Representation: Generalized Stars

" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

/;X P({ay, az))

!y la | < 1A |ay| < 1A |a; +a,| < 1.5
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Representation: Generalized Stars

" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

Vs P({aq, az))
€y .> al S 1 — a%
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Representation: Generalized Stars

" Generalized star is represented as (¢, V, P)

" ¢ — center, I/ — set of vectors, P — predicate.

(c, V,P)={x|3a = (aq,...,ay),c+ Z;a;v; = x,P(a) = T}

a

P({a1, az))

abs(3 - abs(x)) abs(abs(x)- 3) x\2
1.5 sq”<('“bs(“bs(x)' D) Gbse- 1+ (3- abs(x))> " <1 t abs - 3 >* S"”<1 -(3) >+

abs(1- abs(x)))
1- abs(x)

2 _

(-3) * sqrt (1 - (;) ) * sqrt <ab;;0;l(z;)(x_) 44)> ,abs (;) - 0.0913722 * x2 — 3 + sqrt(1- (abs(abs(x)- 2)- 1))

(2.71052 +1.5- 0.5 * abs(x) - 1.35526 * sqrt(4 - (abs(x) - 1)*2)) * sqrt(abs(abs(x) - 1)/(abs(x) - 1))

(4. 5+0.75 x (abs(x - 0.5) + abs(x + 0.5))- 2.75 * (abs(x — 0.75) + abs(x + 0. 75))) * <1 +
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Technique: Basic Idea

* Given initial set ® = (¢, V, P), the Reach is computed not as new
predicate, but 1s done by changing the center and the basis vectors.

|(X1| < 1/\|C¥2| <1

) Reach(0,t) 2 (¢, V', P)
2
l J 0 £ (V,P)

C1]1

la | <1A|ay| <1

D, Viswanathan CAV’16

GaTech - October 2018

65



Technique

Representation + Superposition

Given © £ (c,V, P) to compute reachable set

|
® £ (V,P)

la | < 1A |ay| <1

GaTech - October 2018



Technique

Representation + Superposition

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ 4+ v; for each i

® £ (V,P)

la | < 1A |ay| <1

GaTech - October 2018
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Technique

Representation + Superposition

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ 4+ v; for each i

12l
ol /?'
r\
/ 12‘*\
\
U
® £ (V,P)
C (21

la | < 1A |ay| <1

Reachable set at time t is given by {(c’, V', P) where
1. ¢ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢

GaTech - October 2018
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Technique

Representation + Superposition

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ 4+ v; for each i

la | < 1A |ay| <1

/ ol
T

Reach(0,t) 2 (¢, V', P)

® £ (V,P)

Cvl

la | < 1A |ay| <1

Reachable set at time t is given by {(c’, V', P) where
1. ¢ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢

GaTech - October 2018

69



Technique

Representation + Superposition

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ 4+ v; for each i

la | < 1A |ay| <1

/ -y
T

) Reach(0,t) 2 (¢, V', P)
2
® £ (VP .
c v, ( ) Observation: Reach preserves
el = 1A]az[ <1 the “shape” of the initial set.

Reachable set at time t is given by {(c’, V', P) where
1. ¢ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢
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Technique

Representation + Superposition

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ 4+ v; for each i

la | < 1A |ay| <1 A|ag+ay| <15

Reach(0,t) 2 (¢, V', P)
Observation: Reach preserves
the “shape” of the initial set.

| < 1A |ay| <1A|lay +ay| <15
Reachable set at time t is given by {(c’, V', P) where
1. ¢’ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢

GaTech - October 2018
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Reachable Set Computation Using
Simulations For Generalized Stars

Given © £ (c,V, P) to compute reachable set
1. Simulate from c
2. Simulate from ¢ + v; for each i

D
Reach(0,t) 2 (¢, V', P)

® 2 (c,V,P) Observation: Reach preserves
the “shape” of the initial set.

2
2

achable set at time t is given by (¢, V', P) where
1. ¢’ is the simulation corresponding to ¢
2. v; is the difference of simulations from ¢ + v; and from ¢

GaTech - October 2018
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Demo
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Extensions

B A ccommodate mode switches.

" Developed new invariant constraint
propagation technique.

" Dynamic aggregation and deaggregation
methods.

" Handle Linear systems with
inputs/disturbances.

GaTech - October 2018
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Experimental Evaluation

HyLAA

Scalability with respect to number of dimensions.

Tool Scalability (Replicated Helicopter)

T
SpaceEx supp - -0 -
SpaceEx stc --A--- Pt
Hylaa _é._ /0
]
' ®
..'
’.' @
! ./
A /£
r &
; @
/ g
v o
rA‘ .’.
;7 K3
./o
)y 'y
o®
A ®
Y \ o®
2 -®
L e-60000000000% . ! L
0 200 400 600 800 1000 1200
Dimensions
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#Dims supp stc HyLAA
29 298 260 0.42
57 1093 948 0.67
141 94.83 79.23 2.65
253 583.27 587.42 9.79
449 - - 52.67

1009 - - 605.38

http://stanleybak.com/hylaa/ 75
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Running HyLLAA on
High Dimensional Benchmarks

* Motor (11 dims)

* Building (50 dims)

* Partial Differential Equation (86 dims)
* Heat (202 dims)

* International Space Station (274 dims)
* Clamped Beam (350 dims)

* MNA1 (588 dims)

* FOM (1008 dims)

* MNAS5 (10923 dims)

Won the ‘Best Paper Award’ at ARCH@CPSWeek 2017

GaTech - October 2018
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HyLAA
Constraint Propagation

0 N Y7R——— L,
-6 -4 -2 0 2 4 6 8

(a) SpaceEx stc (b) Flow* (c) HyLAA

Step No Trim Trim

0.05 16 5
0.006 119 9

0.001 576 25 t
0.0005 1148 45

http://stanleybak.com/hylaa/ -
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HyLAA
Aggregation and Deaggregation

Drivetran (Thatas1)

Neg Angle Wt | w  Nez Augl Dend Zotw Pos Angle
e * Expensive to not have any
aggregation.
g . g 4
| g ——— -’ » Completely aggregated
_ (;)..S.im.u]ations (o) Undizgeisited mtroduces, new tfansmons
and doesn’t terminate.
Neg Angle [, Pos Aungle Neg Angle Dend Zooe Pos Angle —
" Dynamic deaggregation
has 1.2x — 5x speedup
& based on the system.
Int IHI"
(c) Aggregated (incomplete) (d) Deaggregated

GaTech - October 2018 http://stanleybak.com/hylaa/ 08
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HyLAA
Aggeregation and Deaggregation

# Dims 10 12 14 16 18 20 24 30 42

Deaggregated 25.70 4494 24.71 131.82 47.72 267.71 450.42 331.57 516.21
Unaggregated 11294 79.24 98.63 145.87 214.80 409.55 561.47 384.55 672.60

" Automotive drivetrain system with additional masses (8 + 20).

" In lower dimensions, the synchronous behavior of masses gives a
better performance for aggregation.

" In higher dimensions, the benefits of aggregation are low because
deaggregation is performed more often.

http://stanleybak.com/hylaa/ 79
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International Space Station Model
(271 dimensions)

ISS 271 ys3 € [—0.0007, 0.0007] Hylaa 1m28s v

ISS* 271  ys & [—0.0005, 0.0005] Hylaa 1m23s 8.5:1079/1.3.107°> 13.71

. The original safety specification was created using
simulations. For most models it was safe.

. For the International Space Station model, however, it
was not! This shows that stmulation can miss errofxs.
The error was not known before analysis with Hylaa.
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Reachability Plot

QL)

0.0006

0.0004

0.0002}

0.0000}

—-0.0002

—0.0004}

—-0.0006

Space Station Reachability

20
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Space Station Specification Violation

0.0004 Counter-Example Trace

0.0002}
0.0000

)
3
@ -0.0002} W
-0.0004— Simulation L
- = Violation Boundary [ -~~~ ~ - = - - - -~ - - = - s : s —
-0.0006

—

T T T VR T TR R

o 06 e
Q. —
£ 04} .
0.2}
0.0 N
0 2 4 6 8 10 12

Time

m 0270 % 8(13.71/0.005) = 3 X 102557 cases!

® Falsification tool did not succeed after 4 hours.
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Counterexample Generation

* Control parameter tuning for regulation.

Overshoot
duration 1

<

Tracking Error

/\ Threshold
Ve
N
\/ i \/ \Time
Overshoot
duration 2

" Any execution that crosses the threshold is not useful.

" Executions that go “maximum” beyond the threshold are more

important than others.

» Executions that stay longer above threshold are also important.
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Longest and Deepest Counterexamples

" Deepest counterexample: execution that ventures into unsafe set
resulting 1n a maximum “depth”.

" Longest counterexample: execution that stays for longest in
unsafe set contiguously.

= Using constraint propagation, developed a new technique that
generates these two counterexamples.

GaTech - October 2018
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Future Work
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What Real Systems ILook Like?

= Nonlinear
" Complex software
= Distributed

" Heterogenuous time
scales

®» Uncertainities

= Failures

" Wowdt Turture |
Fr S8 wes Dwfey Copom Semdes Zapdoe Coe Tooh Sew
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Who Gives The Specitication?

" For each component?
" In a temporal logic?

Absolutely unrealistic!

L Depey  Dege e e Cun how
sz T
8as 9= o> ~-a =
—— - ——— coma (. - e — —~en r—
e Jemme ©
o -
-

Toal st

SO BN L
il
dE,
Ay
4
Sy
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" For e

Verification without
" [nat

specification!
Absolu

Simulation Engine for CPS

!

Generate next
[ Executions of CPS

test execution

State State
51

| [\
i 0

&

N
§

Software Engineering Tools

Directed Falsification

Who Gives The Specification?

eprmz3

s 1
-
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Sometimes, CPS have bugs

BUNNESS DAY

Self-Driving Tesla Was Involved in Fatal Crash, U.S. Says

SCIENCE CEITRRt Cas REVIEWS LONGFIRN  VI9ER Wi

(L

Uber suspended from autonomous vehicle testing
in Arizona following fatal crash

1Izona governor calls Uber crash an unguestionable failure

@
‘n./ \
3 &
o “ California's Autonomous Car Reports Are The Best
< In The Country—But Nowhere Near Good Enough
b “~ Ryan Felton
» ° GENERAL MOTCRS «

S Disengagement rates
Tesla Says Crashed Vehicle Had Been on Autopilot Before Fatal Accident 0.16 - 0'78 f()r 1000 miles

R (1 N+

Uber self driving car running red light.
https://www.youtube.com/watchv=_Cd]40ae84

O Toyota recalls of Prius vehicles (> 20M).
O Software failures in medical devices (approx. 25%)
0 Northeast power grid blackouts.
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https://www.youtube.com/watch?v=_CdJ4oae8f4

U

ATG

{

vehicles, crossing pedestrians, traffic
lights, and signage

360
radar
coverage

Top mounted ligar units provide o 360 Side and rear facing
J-dimensional scan of the enviranment cameras work in
° collabaration to construct

d continuous view of the

sassnsnannanssnnns vohicle's surroundings

- pssnssnssssssssssssss ROOF Mounted
antennae
provide GPS
positioning and
wireless data
capabilities

Forward Tacing camera array focus both
close and far fiield, watching for braking

Custom designed compute and storage
allow for real-time processing of data
while a fully integrated cooling solution
keeps components running optimally

el T

R
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An Enabling Technology
UBER e

d continuous view of

sassnnssnnansnnnns vohicle's surroundings

e psssesssesssssssssess ROOI MOUNted
. antennae

Forward Tacing camera array focus both
close and far field, watching for braking
vehicles, crossing pedestrians, traffic
ights, and signage

provide GRS
positioning and
wireless data
capabilities

360
radar
COVEerage

Custom designed compute and storage
dllow for real-time processing of data
while a fully integrated cooling solution
keeps components running optimally

r- —
STATE OF NORTH CAROLINA

WA - .
1 COMMERCIAL DRIVER'S : 4
(| Georgia ICENSE L
() 2

T
|!)M8*H

ANYTOWMN, GA 3333

DRIVER LICENSE 300030557830

: D uRestr; NONE w Endors: NONE

wice 787878787 v
s 008 05-30-1978W v o
wernn:05-30-2013

SAMPLE -

JOHN DOE
1100 NEW BERN AVE
RALEIGH NC 27657.0001

class € enddors: None restr; None
|saued) 10-22-2013  axpies: 07-08-2021 W
————

Otrdisldne
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How Is This Ditterent From Design
Verification?

»
>
Layer - I (say control design)

‘ Proof - 1I
Counterexample - I

System - [ Verifier - |

System - 11 Verifier - 11

Layer - II (say software implementation)

GaTech - October 2018 [92]



How Is This Ditterent From Design
Verification?

»
>
Layer - I (say control design)

‘ Proof - 1I
Counterexample - I

Do the proofs work together?

GaTech - October 2018 [93]

System - [ Verifier - |

System - 11 Verifier - 11

Layer - II (say software implementation)



A Layered Approach For End-To-End

Verification of Autonomous Vehicles

Model checking
hybrid systems

Robust w.r.t. perturbation proof.

Software verification of

embedded code

f Conformance Checking

> Scheduling analysis

+
Scheduler verification

Hardware correctness proofs

System Identification Analysis
Plant

+ Sound approx. model
Noisy environment

GaTech - October 2018
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——

Let’s Hope For a Day Where Autonomous Vehicles and Humans
Coexist Peacefully




Thank You

" Developed algorithms for verification of nonlinear systems.
" Scalable linear systems verification.

Future work

" Verification without specification

m Certification of autonomous vehicles

(Questions!

GaTech - October 2018

96



Backup Slides
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1.

Observations

The discrete time reachable set doesn’t change the predicate
associated with the star.

L

® £ (V,P)

la | <1A|ay| <1

GaTech - October 2018

®i — (C,, V,,P)

la;| < 1A |ay] <1
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Observations

1. The discrete time reachable set doesn’t change the predicate
associated with the star.

®i — (C,, V,,P)

|af1| < 1/\'052' < 1/\|a1+a2| < 1.5

‘ ® £ (V,P)

|a1| < 1/\|a2| < 1/\|a1+a2| < 1.5

To compute reachable set of a new initial set, just

changing the predicate suffices!

GaTech - October 2018 99



Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

@1 = (C, V,P1>

L

®Z — (C, VrPZ)

Notice: all have same center and
basis in their representation

GaTech - October 2018
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Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.

@1 = (C, V,P1>

Ongg =(C,V,Payq)
R R R R R i) (P]_ Vv PZ) = Pagg

@2 = (C, V,Pz)

Notice: all have same center and

basis in their representation
GaTech - October 2018 101



Observations

. It 1s easy to aggregate and de-aggregate sets on-the-fly.

2 = (C,V,Pz)

otice: all have same center and

asis in their representation
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Observations

. It 1s easy to aggregate and de-aggregate sets on-the-fly.

2 = (C'V'PZ>

otice: all have same center and

asis in their representation
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Observations

2. It is easy to aggregate and de-aggregate sets on-the-fly.
9’1 = (c"V’1P1> .

agg = (€', V', Pogg)
Want to deaggregate!?

Just change the predicates!
(;),2 = (C’, V’rP2>

91 — (C, VrPl) y

R R (P 1 V PZ) = Pagg

(')Z — (C, V'P2>

Notice: all have same center and

basis in their representation
GaTech - October 2018 104



Handling Invariants and
Discrete Transitions
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The Problems With Invariants

" Given 04, 0,, ..., O as discrete time reachable sets for a given

mode, performing just ®; N Inv only gives an overapproximation.

Oit1

0;4+1 N Inv(D)
0; N Inv(l)

ActualReach; ¢

Inv(l)

GaTech - October 2018
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The Problems With Invariants

" Given 04, 0,, ..., O as discrete time reachable sets for a given
mode, performing just ®; N Inv only gives an overapproximation.

Oi+1

0;4+1 N Inv(D)
0; N Inv(l)

ActualReach; ¢

Inv(l) Q) How to compute ActualReach;1?

A) Use constraint propagation!

GaTech - October 2018 107




Forward Constraint Propagation

1. Convert Inv into the center and basis of it" star as {(c;, V:, 0;).
l l l

2. ONInv ={c;,V;, P AQ;)

0; ={(c;,V;, P)

Oi+1 = (Ci+1, Vi1, P)

- 0 ={(V,P)

0;+1 N Inv(l)
0; N Inv(l)

Inv(l)

108




Forward Constraint Propagation

1. Convert Inv into the center and basis of it" star as {(c;, V:, 0;).
l l l

2. ONInv ={c;,V;, P AQ;)

0; ={(c;,V;, P)

Oi+1 = (Ci+1, Vi1, P)

- 0 ={(V,P)

0;+1 N Inv(l)
0; N Inv(l)

(ci, Vi, Q)
\
Inv(l)
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Forward Constraint Propagation

1. Convert Inv into the center and basis of it" star as (c;, V;, Q;).
2. ONInv = (Ci, Vi,P N Ql)

0; ={(c;,V;, P)

Oi+1 = (Ci+1, Vi1, P)

- 0 ={(V,P)

0;+1 N Inv(l)
0; N Inv(l)

(c;, Vi, P A\ Q;)

(ci, Vi, Q)
\
Inv(l)

110




Forward Constraint Propagation

1. Convert Inv into the center and basis of it" star as (c;, V;, Q;).
2. ONInv = (Ci, Vi,P N Ql)

0; ={(c;,V;, P)

Oi+1 = (Ci+1, Vi1, P)

- 0 ={(V,P)

0;+1 N Inv(l)
0; N Inv(l)

(ci, Vi, P\ Q;)

(ci, Vi, Qp) (€Ci+1, Vit1, Qiv1)

\/
Inv(l)
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Forward Constraint Propagation

1. Convert Inv into the center and basis of it" star as (c;, V;, Q;).
2. ONInv = (Ci, Vi,P N Ql)

0; ={(c;,V;, P)

Oi+1 = (Ci+1, Vi1, P)

- 0 ={(V,P)

0;+1 N Inv(l)
0; N Inv(l)

(ci, Vi, P\ Q;)

(ci, Vi, Qp) (€Ci+1, Vit1, Qiv1)

\/
Inv(l)

(Ci+1, Vit 1, PAQi1q)
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Forward Constraint Propagation

1. Convert Inv into the center and basis of it" star as (c;, V;, Q;).
2. ONInv = (Ci,Vi,P/\Qi>
3. These should originate from {c¢,V,P A Q;) in ©

0; = (¢,

Oi+1 = (Ci+1, Vi1, P)
V;, P)

.

0 ={(V,P)

0;+1 N Inv(l)
0; N Inv(l)

(ci, Vi, P\ Q;)

®; N Inv(l) Originated from

(c,V,P AQ;)

Inv(l)

(Ci+1, Vit 1, PAQi1q)
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Forward Constraint Propagation

Convert Inv into the center and basis of it" star as {(c;, Vi, Q;).
®NIinv = (Ci,Vi,P N Ql)
These should originate from (¢, V,P A Q;) in ©

Propagate constraint (J; forward --- add it to predicates of itself
and all future stars.
Oi+1 = (Ci+1, Vit1, P)

0; ={(c;,V;, P)

AN

0;+1 N Inv(l)

®i n IHV(]) <Ci+1; Vi+11 P A Qi+1)
(ci, Vi, P A Q)
ActualReach; 4

®; N Inv(l) Originated from (Cia1, Vi, PAQ; A Qiyq)

i (c,V,PAQ;)
Q 0=(V,P) Inv(l)
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Invariant Constraint Propagation

1. Compute reachable sets 04, 0, ..., O.

2. Convert Inv into star representation of 0; as

(Cl) V1; Ql): (CZI VZJ QZ): ee ) (Ck; Vk; Qk)

3. Add constraint (; to the predicate of 0;, 041, ..., O.
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Invariant Constraint Propagation

1. Compute reachable sets 04, 0, ..., O.
2. Convert Inv into star representation of 0; as ) _
(Cl) Vl; Ql)) (CZI VZ) QZ)) LW (Ck) Vk; Qk) \\\\

______
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Invariant Constraint Propagation

1. Compute reachable sets 01, 0, ..., O.

2. Convert Inv into star representation of 0; as ) _
(Cl) Vl; Ql)) (CZJ VZ; QZ)) e (Ck) Vk; Qk) \\\\

No. of constraints increase )
Isn’t this ex

——————

pensive?

linearly with time?

GaTech - October 2018
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Optimizations

1. If ©; € Inv, then P A Q; = P. Hence, no constraint is added.

2. If ©; € Inv®, then P A Q; = 1. Hence, no need to add Q;.

GaTech - October 2018 118



Optimizations

1. If ©; € Inv, then P A Q; = P. Hence, no constraint is added.
2. If ©; € Inv®, then P A Q; = 1. Hence, no need to add Q;.

3. Add a constraint Q; to P A Qq A -+ A Q;_1 if and only if
(PAQL A AQi—1 = Q)
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Optimizations

If ©; € Inv, then P A Q; = P. Hence, no constraint is added.
If ©; € Inv®, then P A Q; = L. Hence, no need to add Q;.

Add a constraint Q; to P A Q1 A -+ A Q;_4 if and only if
A(PAQL A ANQi—1 = Q)

[Empirical heuristic]: Compare successive constraints @; and
Q;4+1 and if Q44 is stronger than @Q;, replace Q; with Q;41.

GaTech - October 2018
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Discrete Transitions

" Discrete transitions are enabled when the reachable set overlaps
with the guard condition.

= If reachable set from O overlaps with guard G; at ©; 1,0; 5, ..., 0;.
That is, ® has [ successor sets.

" After m discrete transitions, the number of sets to keep track will
be ™. (exponential blow-up).

GaTech - October 2018 121



Discrete Transitions

" Discrete transitions are enabled when the reachable set overlaps
with the guard condition.

= If reachable set from O overlaps with guard G; at ©; 1,0; 5, ..., 0;.
That is, ® has [ successor sets.

" After m discrete transitions, the number of sets to keep track will
be ™. (exponential blow-up).

Solution: Aggregation
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Aggregation — A Necessary Ewvil

" Necessary to reduce the number of sets to keep
track of.
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Aggregation — A Necessary Ewvil

" Necessary to reduce the number of sets to keep
track of.

" Aggregation introduces overapproximation that
we can never get rid of!

" Might cause spurious discrete transitions; cannot
give concrete counterexamples.
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Aggregation — A Necessary Ewvil

" Necessary to reduce the number of sets to keep
track of.

" Aggregation introduces overapproximation that
we can never get rid of!

" Might cause spurious discrete transitions; cannot
glve concrete counterexamples.
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Aggregation — A Necessary Ewvil

" Necessary to reduce the number of sets to keep
track of.

" Aggregation introduces overapproximation that
we can never get rid of!

" Might cause spurious discrete transitions; cannot
glve concrete counterexamples.

Damned if you do!
Damned if you don’t!

GaTech - October 2018
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Dynamic Aggregation
[lustration

1. Aggregate all the sets by default and compute reachable set.

Fa

agg 99
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Dynamic Aggregation

[lustration
1. Aggregate all the sets by default and compute reachable set

128
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Dynamic Aggregation

[lustration
1. Aggregate all the sets by default and compute reachable set

129
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th a guard or unsafe set
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Dynamic Aggregation

[lustration
1. Aggregate all the sets by default and compute reachable set

b

ith a guard or unsafe set

imntersects wi

.

2. When the aggregated set

then deaggregate.

130
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Dynamic Aggregation

[lustration
1. Aggregate all the sets by default and compute reachable set

131
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Model + Real-Time
Operating Systems Behavior



Analyzing Real Time Linear Control Systems
Using Software Verification

D, Viswanathan RTSS 2015 x(t)
State of plant x evolves as /\/\/
/ x = Ax + Bu
Physical Plant .

actuation sensing
if (.) then

else ..

Real Time Operating System

L Scheduling .
Verification that takes all the three 5

aspects into account s N
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Computational Model

1. Control program 1s a task on RTOS (periodically scheduled).
2. Delay between sensing and actuation (computation time).

3. Control program may or may not make the deadline.

Time Period(T) Time Period(T) Time Period(T)

—

/—{ sensing: X « X,
\(\ computation: u5 * [[P]](.\')] ‘

L

/-——{ sensing: X «— X,
computation: u; « [[P]](x)

-—————
Time Period(T) | Time Period(T) Time Period(T)
actuation actuation actuation actuation
Ug =0 U = IIP”(I“) u = IIPI](—"x) Uz = Uz

Control program is run every T time units.

[t may/may not make the deadline (TWCRT).

[f it makes the deadline, results of computation are given as actuation parameters.
If it does not make the deadline, computation results are thrown away.

el N
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Software Verification Inspired Technique:
Outline
e

if (.) then
else _

z N
N

=

2

Physical Plant l

Software Verification Tools
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Bringing These Two Toiether
Controller code

u = -2*%a_s -2*x(v_s - vf_s);

d5=d4; d 4 =d.3; d_. 3 =d_2; d_2 =d_1;
deadline_met = 0; // assume deadline miss
Assume(d_1 == 0 || d_1 == 1);
if((d_1 ==1) & ((d_1 +d_ 2 +d_3 +d_4 +d_5 > 2)
|l (d_1 + d_2 + d_3 > 1))) then
d_1 = 0; // according to TWCA
endif;

if(d_1 == 0) then deadline met = 1; // deadline met
endif;

Timing Behavior

// Update actuation parameters if deadline is met

.f i Tt == : :
’ﬁdzagli?e'me 2 Updating actuation only when
endif; deadline is met

s n=s - 0.0995x(v-vf) -0.005%a - 0.0002%u_a;
v.n =vf + 0.99%(v-vf) + 0.0995%a + 0.005%u_a;
a_n a + 0.1%xu_a;

Plant behavior

GaTech - October 2018
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