event

Prof. Colin D. Heyes, University of Arkansas

Primary tabs

Prof. Colin D. Heyes, University of Arkansas

Tuning Organic-Inorganic and Inorganic-Inorganic Interfaces of Quantum Dots for Ensemble and Single Molecule Fluorescence Applications

Physical Chemistry Seminar Series

Due to the high surface-to-volume ratio of nanoparticles, the fluorescence properties of colloidal quantum dots (QDs) are strongly affected by the various interfaces present. Simple core-only QDs have an inorganic-organic surface-ligand interface, while core-shell (or core-multishell) quantum dots have, in addition, inorganic-inorganic core-shell interfaces. We have systematically tuned the interfaces of cadmium-chalcogenide or copper-indium-chalcogenide cores and upon adding cadmium- and zinc-chalcogenide shells. The optical and structural properties at the ensemble and single particle level are analyzed by a combination of time-resolved fluorescence spectroscopy, single-particle fluorescence microscopy, quantitative FT-IR absorption spectroscopy, X-ray photoelectron (XPS) spectroscopy and high-resolution TEM/HAADF-STEM/EELS microscopy. In particular, we explore connections between the structural details of the interfaces and the quantum yield, radiative and non-radiative excited state decay rates, ligand binding, fluorescence blinking and the formation of a dark fraction. We also evaluate the response of these properties to external environments will be discussed to help devise strategies to tailor QDs for various applications. To illustrate these connections, I will present several applications utilizing bandgap and lifetime engineering of quantum dots – in particular for ultrasensitive biophysical and biomedical imaging.

Prof. Heyes' web page

For more information contact Prof. Angelo Bongiorno (404-385-5169).

Status

  • Workflow Status:Published
  • Created By:Shirley Tomes
  • Created:11/12/2012
  • Modified By:Fletcher Moore
  • Modified:10/07/2016

Keywords

  • No keywords were submitted.